(2)直线与平面平行的判定. 查看更多

 

题目列表(包括答案和解析)

对于平面M与平面N, 有下列条件: ①M、N都垂直于平面Q; ②M、N都平行于平面Q; ③ M内不共线的三点到N的距离相等; ④ l, M内的两条直线, 且l // M, m // N; ⑤ l, m是异面直线,且l // M, m // M; l // N, m // N, 则可判定平面M与平面N平行的条件的个数是: 

          。       

查看答案和解析>>

如图所示的长方体中,底面是边长为的正方形,的交点,是线段的中点.

(Ⅰ)求证:平面

(Ⅱ)求证:平面

(Ⅲ)求二面角的大小.

【解析】本试题主要考查了线面平行的判定定理和线面垂直的判定定理,以及二面角的求解的运用。中利用,又平面平面,∴平面,又,∴平面. 可得证明

(3)因为∴为面的法向量.∵

为平面的法向量.∴利用法向量的夹角公式,

的夹角为,即二面角的大小为

方法一:解:(Ⅰ)建立如图所示的空间直角坐标系.连接,则点

,又点,∴

,且不共线,∴

平面平面,∴平面.…………………4分

(Ⅱ)∵

,即

,∴平面.   ………8分

(Ⅲ)∵,∴平面

为面的法向量.∵

为平面的法向量.∴

的夹角为,即二面角的大小为

 

查看答案和解析>>

如图,正方体ABCD-A1B1C1D1中,E,F分别为棱DD1,AB上的点。
已知下列判断:①A1C⊥平面B1EF;
②△B1EF在侧面BCC1B1上的正投影是面积为定值的三角形;
③在平面A1B1C1D1内总存在与平面B1EF平行的直线;
④平面B1EF与平面ABCD所成的二面角(锐角)的大小与点E的位置有关,与点F的位置无关;
其中正确判断的个数有
[     ]
A、1个
B、2个
C、3个
D、4个

查看答案和解析>>

已知,如图,AB是⊙O的直径,AC切⊙O于点A,AC=AB,CO交⊙O于点P,CO的延长线交⊙O于点F,   BP的延长线交AC于点E.

⑴求证:FA∥BE;

⑵求证:

【解析】本试题主要是考查了平面几何中圆与三角形的综合运用。

(1)要证明线线平行,主要是通过证明线线平行的判定定理得到

(2)利用三角形△APC∽△FAC相似,来得到线段成比列的结论。

证明:(1)在⊙O中,∵直径AB与FP交于点O ∴OA=OF

 ∴∠OAF=∠F  ∵∠B=∠F  ∴∠OAF=∠B ∴FA∥BE

(2)∵AC为⊙O的切线,PA是弦  ∴∠PAC=∠F

∵∠C=∠C ∴△APC∽△FAC  ∴

 ∵AB=AC  ∴

 

查看答案和解析>>


同步练习册答案