1.(1)若正四棱锥的底面积为Q.侧面积为P.则侧面与底面所成的角的余弦值为 , (2)已知正四棱锥的侧棱与底面成角.则此四棱锥的相邻两个侧面所成的二面角的余弦值等于 , (3)在正四棱锥P-ABCD中.已知侧棱长与底面边长相等.E是PA的中点.则异面直线BE与PC所成的角的余弦值是 . 查看更多

 

题目列表(包括答案和解析)

(本题12分)如图,在四棱锥P-ABCD中,侧面PAD⊥底面 ABCD,侧棱PA=PD,底面ABCD为直角梯形,BCADABADAD=2AB=2BC=2,  OAD中点.

(1)求证:PO⊥平面ABCD

(2)求直线PB与平面PAD所成角的正弦值;

(3)线段AD上是否存在点Q,使得三棱锥的体积为?若存在,求出的值;若不存在,请说明理由。

查看答案和解析>>

(本题12分)
如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD,底面ABCD为直角梯形,BCADABADAD=2AB=2BC="2, " OAD中点.
(1)求证:PO⊥平面ABCD
(2)求直线PB与平面PAD所成角的正弦值;
(3)线段AD上是否存在点Q,使得三棱锥的体积为?若存在,求出的值;若不存在,请说明理由。

查看答案和解析>>

(、(本题12分)

如图,在四棱锥P-ABCD中,侧面PAD⊥底面 ABCD,侧棱PA=PD,底面ABCD为直角梯形,BCADABADAD=2AB=2BC=2,  OAD中点.

(1)求证:PO⊥平面ABCD

(2)求直线PB与平面PAD所成角的正弦值;

(3)线段AD上是否存在点Q,使得三棱锥的体积为?若存在,求出的值;若不存在,请说明理由。

 

 

 

 

 

 

 

查看答案和解析>>

(、(本题12分)

如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD,底面ABCD为直角梯形,BCADABADAD=2AB=2BC="2, " OAD中点.
(1)求证:PO⊥平面ABCD
(2)求直线PB与平面PAD所成角的正弦值;
(3)线段AD上是否存在点Q,使得三棱锥的体积为?若存在,求出的值;若不存在,请说明理由。

查看答案和解析>>

已知抛物线C:y2=2px(p>0)上任意一点到焦点F的距离比到y轴的距离大1.
(1)求抛物线C的方程;
(2)若过焦点F的直线交抛物线于M、N两点,M在第一象限,且|MF|=2|NF|,求直线MN的方程;
(3)求出一个数学问题的正确结论后,将其作为条件之一,提出与原来问题有关的新问题,我们把它称为原来问题的一个“逆向”问题.
例如,原来问题是“若正四棱锥底面边长为4,侧棱长为3,求该正四棱锥的体积”.求出体积
16
3
后,它的一个“逆向”问题可以是“若正四棱锥底面边长为4,体积为
16
3
,求侧棱长”;也可以是“若正四棱锥的体积为
16
3
,求所有侧面面积之和的最小值”.
现有正确命题:过点A(-
p
2
,0)
的直线交抛物线C:y2=2px(p>0)于P、Q两点,设点P关于x轴的对称点为R,则直线RQ必过焦点F.
试给出上述命题的“逆向”问题,并解答你所给出的“逆向”问题.

查看答案和解析>>


同步练习册答案