2.直线与平面垂直的性质定理: . 查看更多

 

题目列表(包括答案和解析)

在四棱锥中,平面,底面为矩形,.

(Ⅰ)当时,求证:

(Ⅱ)若边上有且只有一个点,使得,求此时二面角的余弦值.

【解析】第一位女利用线面垂直的判定定理和性质定理得到。当a=1时,底面ABCD为正方形,

又因为,………………2分

,得证。

第二问,建立空间直角坐标系,则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

设BQ=m,则Q(1,m,0)(0《m《a》

要使,只要

所以,即………6分

由此可知时,存在点Q使得

当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得

由此知道a=2,  设平面POQ的法向量为

,所以    平面PAD的法向量

的大小与二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值为

解:(Ⅰ)当时,底面ABCD为正方形,

又因为,………………3分

(Ⅱ) 因为AB,AD,AP两两垂直,分别以它们所在直线为X轴、Y轴、Z轴建立坐标系,如图所示,

则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

设BQ=m,则Q(1,m,0)(0《m《a》要使,只要

所以,即………6分

由此可知时,存在点Q使得

当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得由此知道a=2,

设平面POQ的法向量为

,所以    平面PAD的法向量

的大小与二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值为

 

查看答案和解析>>

如图,边长为2的正方形ABCD,E是BC的中点,沿AE,DE将折起,使得B与C重合于O.

(Ⅰ)设Q为AE的中点,证明:QDAO;

(Ⅱ)求二面角O—AE—D的余弦值.

【解析】第一问中,利用线线垂直,得到线面垂直,然后利用性质定理得到线线垂直。取AO中点M,连接MQ,DM,由题意可得:AOEO, DOEO,

AO=DO=2.AODM

因为Q为AE的中点,所以MQ//E0,MQAO

AO平面DMQ,AODQ

第二问中,作MNAE,垂足为N,连接DN

因为AOEO, DOEO,EO平面AOD,所以EODM

,因为AODM ,DM平面AOE

因为MNAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=

(1)取AO中点M,连接MQ,DM,由题意可得:AOEO, DOEO,

AO=DO=2.AODM

因为Q为AE的中点,所以MQ//E0,MQAO

AO平面DMQ,AODQ

(2)作MNAE,垂足为N,连接DN

因为AOEO, DOEO,EO平面AOD,所以EODM

,因为AODM ,DM平面AOE

因为MNAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=

二面角O-AE-D的平面角的余弦值为

 

查看答案和解析>>

如图,三棱柱中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点。

(I) 证明:平面⊥平面
(Ⅱ)平面分此棱柱为两部分,求这两部分体积的比.
【命题意图】本题主要考查空间线线、线面、面面垂直的判定与性质及几何体的体积计算,考查空间想象能力、逻辑推理能力,是简单题.

查看答案和解析>>

如图,三棱柱中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点。

(I) 证明:平面⊥平面

(Ⅱ)平面分此棱柱为两部分,求这两部分体积的比.

【命题意图】本题主要考查空间线线、线面、面面垂直的判定与性质及几何体的体积计算,考查空间想象能力、逻辑推理能力,是简单题.

【解析】(Ⅰ)由题设知BC⊥,BC⊥AC,,∴,    又∵,∴,

由题设知,∴=,即,

又∵,   ∴⊥面,    ∵

∴面⊥面

(Ⅱ)设棱锥的体积为=1,由题意得,==

由三棱柱的体积=1,

=1:1,  ∴平面分此棱柱为两部分体积之比为1:1

 

查看答案和解析>>


同步练习册答案