能正确地求出正弦.余弦函数及一些简单复合函数的单调区间 查看更多

 

题目列表(包括答案和解析)

为了保护环境,某化工厂在政府部门的支持下,进行技术改造:每天把工业废气转化为某种化工产品和符合排放要求的气体,经测算,该工厂每天处理废气的成本y(元)与处理废气量x(吨)之间的函数关系可近似地表示为:y=
1
16
x3+1000,
x∈[10,40)
2x2-130x+5000,x∈[40,70]
,且每处理1吨工业废气可得价值为50元的某种化工产品.
(1)当工厂日处理废气量x∈[40,70]时,判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,为了保证工厂在生产中没有亏损现象出现,国家至少每天财政补贴多少元?
(2)若国家给予企业处理废气阶梯式财政补贴,当日废气处理量不足40吨时,给予每顿80元补贴,废气处理量不少于40吨时,超过40吨的部分再增加每顿55元的补贴,当工厂的日处理量为多少吨时,工厂处理每顿废气的平均收益最大?

查看答案和解析>>

为了保护环境,某工厂在政府部门的支持下,进行技术改进:把二氧化碳转化为某种化工产品,经测算,该处理成本y(万元)与处理量x(吨)之间的函数关系可近似地表示为:y=
1
25
x3+640,x∈[10,30)
x2-40x+1600,x∈[30,50]
,且每处理一吨二氧化碳可得价值为20万元的某种化工产品.
(Ⅰ)当x∈[30,50]时,判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元,该工厂才不亏损?
(Ⅱ)当处理量为多少吨时,每吨的平均处理成本最少.

查看答案和解析>>

(本题满分13分)

为了保护环境,某工厂在政府部门的支持下,进行技术改进: 把二氧化碳转化为某种化工产品,经测算,该处理成本(万元)与处理量(吨)之间的函数关系可近似地表示为: , 且每处理一吨二氧化碳可得价值为万元的某种化工产品.

(Ⅰ)当 时,判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元,该工厂才不亏损?

(Ⅱ) 当处理量为多少吨时,每吨的平均处理成本最少.

 

查看答案和解析>>

为了保护环境,某化工厂在政府部门的支持下,进行技术改造:每天把工业废气转化为某种化工产品和符合排放要求的气体,经测算,该工厂每天处理废气的成本y(元)与处理废气量x(吨)之间的函数关系可近似地表示为:y=
1
16
x3+1000,
x∈[10,40)
2x2-130x+5000,x∈[40,70]
,且每处理1吨工业废气可得价值为50元的某种化工产品.
(1)当工厂日处理废气量x∈[40,70]时,判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,为了保证工厂在生产中没有亏损现象出现,国家至少每天财政补贴多少元?
(2)若国家给予企业处理废气阶梯式财政补贴,当日废气处理量不足40吨时,给予每顿80元补贴,废气处理量不少于40吨时,超过40吨的部分再增加每顿55元的补贴,当工厂的日处理量为多少吨时,工厂处理每顿废气的平均收益最大?

查看答案和解析>>

(本题满分13分)

为了保护环境,某工厂在政府部门的支持下,进行技术改进: 把二氧化碳转化为某种化工产品,经测算,该处理成本(万元)与处理量(吨)之间的函数关系可近似地表示为: , 且每处理一吨二氧化碳可得价值为万元的某种化工产品.

(Ⅰ)当 时,判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元,该工厂才不亏损?  

(Ⅱ) 当处理量为多少吨时,每吨的平均处理成本最少.

 

查看答案和解析>>


同步练习册答案