如果对于任意一个整数n.在区间内至少有4个使函数的值不存在的点.试求的最小整数值. 查看更多

 

题目列表(包括答案和解析)

(2013•虹口区二模)定义域为D的函数f(x),如果对于区间I内(I⊆D)的任意两个数x1、x2都有f(
x1+x2
2
)≥
1
2
[f(x1)+f(x2)]
成立,则称此函数在区间I上是“凸函数”.
(1)判断函数f(x)=lgx在R+上是否是“凸函数”,并证明你的结论;
(2)如果函数f(x)=x2+
a
x
1,2
上是“凸函数”,求实数a的取值范围;
(3)对于区间
c,d
上的“凸函数”f(x),在
c,d
上任取x1,x2,x3,…,xn
①证明:当n=2k(k∈N*)时,f(
x1+x2+…+xn
n
)≥
1
n
[f(x1)+f(x2)+…+f(xn)]
成立;
②请再选一个与①不同的且大于1的整数n,
证明:f(
x1+x2+…+xn
n
)≥
1
n
[f(x1)+f(x2)+…+f(xn)]
也成立.

查看答案和解析>>


同步练习册答案