平面的基本性质: (1)公理1: . (2)公理2: . (3)公理3: . 推论1: . 推论2: . 推论3: . 查看更多

 

题目列表(包括答案和解析)

下列命题中,正确命题的个数为(  )

①平面的基本性质1可用集合符号叙述为:若AlBl,且AαBα,则必有lα

②四边形的两条对角线必相交于一点;

③用平行四边形表示的平面,以平行四边形的四条边作为平面的边界线;

④平行四边形是平面图形.

A.1个                  B.2个         C.3个                  D.4个

查看答案和解析>>

 [番茄花园1] 本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分10分。

若实数满足,则称远离.

(1)若比1远离0,求的取值范围;

(2)对任意两个不相等的正数,证明:远离

(3)已知函数的定义域.任取等于中远离0的那个值.写出函数的解析式,并指出它的基本性质(结论不要求证明).

23本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.

已知椭圆的方程为,点P的坐标为(-a,b).

(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足,求点的坐标;

(2)设直线交椭圆两点,交直线于点.若,证明:的中点;

(3)对于椭圆上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆上存在不同的两个交点满足,写出求作点的步骤,并求出使存在的θ的取值范围.

 

 

 

 


 [番茄花园1]22.

查看答案和解析>>

..(本小题满分14分)坐标法是解析几何中最基本的研究方法,坐标法是以坐标系为桥梁,把几何问题转化成代数问题,通过代数运算研究几何图形性质的方法.请利用坐标法解决以下问题:

(Ⅰ)在直角坐标平面内,已知,对任意,试判断的形状;

(Ⅱ)在平面内,已知中,的中点,,求证:.

 

 

 

 

 

查看答案和解析>>


同步练习册答案