方程叫做 . 查看更多

 

题目列表(包括答案和解析)

二次函数f(x)=ax2+bx+c和一次函数g(x)=-bx,其中a、b、c满足a>b>c,a+b+c=0(a、b、c∈R).
(1)求证:两函数图象交于不同的两点A、B.
(2)求证:方程f(x)-g(x)=0的两根均小于2.

查看答案和解析>>

(2012•绵阳三模)已知函数f(x)=2x3-3ax2+a+b(其中a,b为实常数).
(I)讨论函数的单调区间;
(II) 当a>0时,函数f(x)有三个不同的零点,证明:-a<b<a3-a;
(III) 若f(x)在区间[1,2]上是减函数,设关于X的方程f(x)=2x3-2ax2+3x+a+b的两个非零实数根为x1,x2.试问是否存在实数m,使得m2+tm+1≤|x1-x2|对任意满足条件的a及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.

查看答案和解析>>

(2008•徐汇区二模)已知函数f(x)=x|x-a|+b,g(x)=x+c(其中a、b、c为常数)
(1)当a=3,b=2,c=4时,求函数F(x)=f(x)-g(x)在[3,+∞)上的值域;
(2)当a=3,b=2,c=4时,判断函数G(x)=f(x)•g(x)在[3,+∞)上的单调性,并加以证明;
(3)当b=4,c=2时,方程f(x)=g(x)有三个不同的解,求实数a的取值范围.

查看答案和解析>>

下面给出了关于复数的四种类比推理:

① 复数的加减法运算,可以类比多项式的加减法运算法则;

② 由向量  的性质 ,可以类比得到复数  的性质

③ 方程 a 、b 、c ∈ R )有两个不同实根的条件是,类比可以得到 方程 a 、b 、c ∈ C)有两个不同复数根的条件是

④ 由向量加法的几何意义,可以类比得到复数加法的几何意义。

其中类比得到的结论正确的是( *** )

A.① ③         B..② ④        C.② ③       D.① ④  

 

查看答案和解析>>

二次函数f(x)=ax2+bx+c和一次函数g(x)=-bx,其中a、b、c满足a>b>c,a+b+c=0(a、b、c∈R).
(1)求证:两函数图象交于不同的两点A、B.
(2)求证:方程f(x)-g(x)=0的两根均小于2.

查看答案和解析>>


同步练习册答案