19.在△ABC中.a.b.c分别是角A.B.C所对的边长.若a2+c2=b2+ac且=.求角C的大小. [解] 由a2+c2=b2+ac得:cosB===.所以.B=60° 又∵= ∴===cotC+= ∴cotC=1.C=45°. 查看更多

 

题目列表(包括答案和解析)

在△ABC中,a、b、c分别是角A、B、C的对边,若(a+b+c)(b+c-a)=3bc.
(1)求角A的值;
(2)在(1)的结论下,若0≤x≤
π2
,求y=cos2x+sinA•sin2x的最值.

查看答案和解析>>

在△ABC中,a、b、c分别是角A、B、C的对边,
m
=(2b-
3
c,cosC),
n
=(
3
a,cosA),且
m
n

(Ⅰ)求角A的大小;
(Ⅱ)求2cos2B+sin(A-2B)的最小值.

查看答案和解析>>

在△ABC中,a、b、c分别是角∠A、∠B、∠C所对的边.已知4sinBcos2
B
2
=sin2B+
3

(Ⅰ)求∠B的大小;
(Ⅱ)若a=4,△ABC的面积为5
3
,求b的值.

查看答案和解析>>

在△ABC中,a、b、c分别是角A、B、C的对边,且
a+c
a+b
=
b-a
c

(Ⅰ)求角B的大小;
(Ⅱ)若△ABC最大边的边长为
7
,且sinC=2sinA,求最小边长.

查看答案和解析>>

在△ABC中,a、b、c分别是角A、B、C的对边,且bcosA-acosB=c-a.
(Ⅰ)求角B的大小;
(Ⅱ)若△ABC的面积是
3
3
4
,且a+c=5,求b.

查看答案和解析>>


同步练习册答案