题目列表(包括答案和解析)
第一列 | 第二列 | 第三列 | |
第一行 | -3 | 3 | 1 |
第二行 | 5 | 0 | 2 |
第三行 | -1 | 2 | 0 |
an+2 |
2n |
(16分)设{an}是等差数列,其前n项的和为Sn.
(1)求证:数列为等差数列;
(2)设{an}各项为正数,a1=,a1≠a2,若存在互异正整数m,n,p满足:①m+p=2n;
②. 求集合的元素个数;
(3)设bn=(a为常数,a>0,a≠1,a1≠a2),数列{bn}前n项和为Tn. 对于正整数c,
d,e,f,若c<d<e<f,且c+f=d+e, 试比较(Tc)-1+(Tf)-1与(Td)-1+(Te)-1的大小.设等差数列的前项和为,公比是正数的等比数列的前项和为,已知。
(Ⅰ)求的通项公式;
(Ⅱ)若数列满足对任意都成立;求证:数列是等比数列。
设等差数列的公差为,且.若设是从开始的前项数列的和,即,,如此下去,其中数列是从第开始到第)项为止的数列的和,即.
(1)若数列,试找出一组满足条件的,使得: ;
(2)试证明对于数列,一定可通过适当的划分,使所得的数列中的各数都为平方数;
(3)若等差数列中.试探索该数列中是否存在无穷整数数列
,使得为等比数列,如存在,就求出数列;如不存在,则说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com