解:(1)当时.有不等式. ∴.∴不等式的解为: (2)∵不等式 当时.有.∴不等式的解集为, 当时.有.∴不等式的解集为, 当时.不等式的解为. 查看更多

 

题目列表(包括答案和解析)

阅读不等式5x≥4x+1的解法:
解:由5x≥4x+1,两边同除以5x可得1≥(
4
5
)x+(
1
5
)x

由于0<
1
5
4
5
<1
,显然函数f(x)=(
4
5
x+(
1
5
x在R上为单调减函数,
f(1)=
4
5
+
1
5
=1
,故当x>1时,有f(x)=(
4
5
x+(
1
5
x<f(x)=1
所以不等式的解集为{x|x≥1}.
利用解此不等式的方法解决以下问题:
(1)解不等式:9x>5x+4x
(2)证明:方程5x+12x=13x有唯一解,并求出该解.

查看答案和解析>>

阅读不等式2x+1>3x的解法:
f(x)=(
2
3
)x+(
1
3
)x
,函数y=(
2
3
)x
y=(
1
3
)x
在R内都单调递减;则f(x)在(-∞,+∞)内单调递减.
∵f(1)=1,∴当x<1时,(
2
3
)x+(
1
3
)x>1,当x≥1时,(
2
3
)x+(
1
3
)x≤1

∵3x>0,∴不等式2^+1>3x的解为x<1
(1)试利用上面的方法解不等式2x+3x≥5x
(2)证明:3x+4x=5x有且仅有一个实数解x=2.

查看答案和解析>>

阅读不等式2x+1>3x的解法:
f(x)=(
2
3
)x+(
1
3
)x
,函数y=(
2
3
)x
y=(
1
3
)x
在R内都单调递减;则f(x)在(-∞,+∞)内单调递减.
∵f(1)=1,∴当x<1时,(
2
3
)x+(
1
3
)x>1,当x≥1时,(
2
3
)x+(
1
3
)x≤1

∵3x>0,∴不等式2^+1>3x的解为x<1
(1)试利用上面的方法解不等式2x+3x≥5x
(2)证明:3x+4x=5x有且仅有一个实数解x=2.

查看答案和解析>>

设集合数学公式数学公式,又设函数f(x)=2x2+mx-1.
(1)若不等式f(x)≤0的解集为C,且C⊆(A∪B),求实数m的取值范围.
(2)若对任意x∈R,有f(1-x)=f(1+x)成立,试求当x∈(A∩B)时,函数f(x)的值域.
(3)当m∈(A∪B),x∈(A∩B)时,求证:数学公式

查看答案和解析>>

设集合,又设函数f(x)=2x2+mx-1.
(1)若不等式f(x)≤0的解集为C,且C⊆(A∪B),求实数m的取值范围.
(2)若对任意x∈R,有f(1-x)=f(1+x)成立,试求当x∈(A∩B)时,函数f(x)的值域.
(3)当m∈(A∪B),x∈(A∩B)时,求证:

查看答案和解析>>


同步练习册答案