设Q.P.R分别表示有理数集.无理数集.实数集.则QÈP=---( D ) A. Q B. P C. Ø D. R 查看更多

 

题目列表(包括答案和解析)

记定义在[-1,1]上的函数f(x)=x2+px+q(p,q∈R)的最大值与最小值分别为M,m.又记h(p)=M-m.
(Ⅰ)当0≤p≤2时,求M、m(用p,q表示),并证明h(p)≥1;
(Ⅱ)写出h(p)的解析式(不必写出求解过程);
(Ⅲ)在所有形如题设的函数f(x)中,求出这样的f(x),使得|f(x)|的最大值为最小.

查看答案和解析>>

在△OAB的边OA、OB上分别有一点P、Q,已知|
OP
|
|
PA
|
=1:2,|
OQ
|
|
QB
|
=3:2,连接AQ、BP,设它们交于点R,若
OA
=
a
OB
=
b

(Ⅰ)用
a
b
表示
OR

(Ⅱ)过R作RH⊥AB,垂足为H,若|
a
|=1,|
b
|=2,
a
b
的夹角θ∈[
π
3
3
]
,求
|
BH|
|
BA|
的范围.

查看答案和解析>>

已知函数y=f(x),任取t∈R,定义集合:At={y|y=f(x),点P(t,f(t)),Q(x,f(x)),|PQ|≤
2
}
.设Mt,mt分别表示集合At中元素的最大值和最小值,记h(t)=Mt-mt.则:
(1)若函数f(x)=x,则h(1)=
 

(2)若函数f(x)=sin
π
2
x
,则h(t)的最大值为
 

查看答案和解析>>

(2013•海淀区一模)已知函数f(x)=sin
π
2
x,任取t∈R,定义集合:At={y|y=f(x),点P(t,f(t)),Q(x,f(x))满足|PQ|≤
2
}.设Mt,mt分别表示集合At中元素的最大值和最小值,记h(t)=Mt-mt.则
(1)函数h(t)的最大值是
2
2

(2)函数h(t)的单调递增区间为
(2k-1,2k),k∈Z
(2k-1,2k),k∈Z

查看答案和解析>>

(2013•海淀区一模)已知函数y=f(x),任取t∈R,定义集合:At={y|y=f(x)},点P(t,f(t)),Q(x,f(x))满足|PQ|
2
.设Mt,mt分别表示集合At中元素的最大值和最小值,记h(t)=Mt-mt.则
(1)若函数f(x)=x,则h(1)=
2
2

(2)若函数f(x)=sin
π
2
x,则h(t)的最小正周期为
2
2

查看答案和解析>>


同步练习册答案