若方程有二个实数解.则的取值范围是 ( ) A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

已知函数.

(Ⅰ)若函数依次在处取到极值.求的取值范围;

(Ⅱ)若存在实数,使对任意的,不等式 恒成立.求正整数的最大值.

【解析】第一问中利用导数在在处取到极值点可知导数为零可以解得方程有三个不同的实数根来分析求解。

第二问中,利用存在实数,使对任意的,不等式 恒成立转化为,恒成立,分离参数法求解得到范围。

解:(1)

(2)不等式 ,即,即.

转化为存在实数,使对任意的,不等式恒成立.

即不等式上恒成立.

即不等式上恒成立.

,则.

,则,因为,有.

在区间上是减函数。又

故存在,使得.

时,有,当时,有.

从而在区间上递增,在区间上递减.

[来源:]

所以当时,恒有;当时,恒有

故使命题成立的正整数m的最大值为5

 

查看答案和解析>>

(2012•佛山二模)若关于x的方程2|x|+x2-a=0有两个不等的实数解,则a的取值范围是
(1,+∞)
(1,+∞)

查看答案和解析>>

(2009•成都二模)若关于x的方程x2-3x=m-2在[0,2]上有两个不同实数解,则实数m的取值范围是
(-
1
4
,0]
(-
1
4
,0]

查看答案和解析>>

为实数,首项为,公差为的等差数列的前n项和为,满足

(1)若,求;

(2)求d的取值范围.

【解析】本试题主要考查了数列的求和的运用以及通项公式的运用。第一问中,利用和已知的,得到结论

第二问中,利用首项和公差表示,则方程是一个有解的方程,因此判别式大于等于零,因此得到d的范围。

解:(1)因为设为实数,首项为,公差为的等差数列的前n项和为,满足

所以

(2)因为

得到关于首项的一个二次方程,则方程必定有解,结合判别式求解得到

 

查看答案和解析>>

命题方程有两个不等的正实数根, 命题方程无实数根。若“”为真命题,求的取值范围。

【解析】本试题主要考查了命题的真值问题,以及二次方程根的综合运用。

解:“p或q”为真命题,则p为真命题,或q为真命题,或q和p都是真命题

当p为真命题时,则,得

当q为真命题时,则

当q和p都是真命题时,得

 

查看答案和解析>>


同步练习册答案