15.如果在函数的图象上任取不同的两点..线段总在图象的下方.那么函数的图象给我们向上凸起的印象.我们称函数为上凸函数,反之.如果在函数的图象上任取不同的两点..线段总在图象的上方.那么我们称函数为下凸函数.例如:就是一个上凸函数.请写出两个不同类型的下凸函数的解析式: , 查看更多

 

题目列表(包括答案和解析)

如果在函数y=f(x)的图象上任取不同的两点A、B,线段AB(端点除外)总在f(x)图象的下方,那么函数f(x)的图象给我们向上凸起的印象,我们称函数f(x)为上凸函数;反之,如果在函数y=f(x)的图象上任取不同的两点A、B,线段AB(端点除外)总在f(x)图象的上方,那么我们称函数f(x)为下凸函数.例如:y=-x2就是一个上凸函数.请写出两个不同类型的下凸函数的解析式:
y=x2,y=2x
y=x2,y=2x

查看答案和解析>>

如果在函数y=f(x)的图象上任取不同的两点A、B,线段AB(端点除外)总在f(x)图象的下方,那么函数f(x)的图象给我们向上凸起的印象,我们称函数f(x)为上凸函数;反之,如果在函数y=f(x)的图象上任取不同的两点A、B,线段AB(端点除外)总在f(x)图象的上方,那么我们称函数f(x)为下凸函数.例如:y=-x2就是一个上凸函数.请写出两个不同类型的下凸函数的解析式:   

查看答案和解析>>

如果在函数y=f(x)的图象上任取不同的两点A、B,线段AB(端点除外)总在f(x)图象的下方,那么函数f(x)的图象给我们向上凸起的印象,我们称函数f(x)为上凸函数;反之,如果在函数y=f(x)的图象上任取不同的两点A、B,线段AB(端点除外)总在f(x)图象的上方,那么我们称函数f(x)为下凸函数.例如:y=-x2就是一个上凸函数.请写出两个不同类型的下凸函数的解析式:________.

查看答案和解析>>

已知函数f(x)=ax﹣lnx+1(a∈R),g(x)=x e1-x
(1)求函数g(x)在区间(0,e]上的值域;
(2)是否存在实数a,对任意给定的x0∈(0,e],在区间[1,e]上都存在两个不同的xi(i=1,2),使得f(xi)=g(x0)成立,若存在,求出a的取值范围;若不存在,请说明理由。
(3)给出如下定义:对于函数y=F(x)图象上任意不同的两点A(x1,y1),B(x2,y2),如果对于函数y=F(x)图象上的点M(x0,y0)(其中总能使得F(x1)﹣F(x2)=F'(x0)(x1-x2)成立,则称函数具备性质“L”,试判断函数f(x)是不是具备性质“L”,并说明理由。

查看答案和解析>>

已知函数f(x)=ax-lnx+1(a∈R),g(x)=xe1-x
(1)求函数g(x)在区间(0,e]上的值域;
(2)是否存在实数a,对任意给定的x0∈(0,e],在区间[1,e]上都存在两个不同的xi(i=1,2),使得f(xi)=g(x0)成立.若存在,求出a的取值范围;若不存在,请说明理由.
(3)给出如下定义:对于函数y=F(x)图象上任意不同的两点A(x1,y1),B(x2,y2),如果对于函数y=F(x)图象上的点M(x0,y0)(其中x0=
x1+x2
2
)
总能使得F(x1)-F(x2)=F'(x0)(x1-x2)成立,则称函数具备性质“L”,试判断函数f(x)是不是具备性质“L”,并说明理由.

查看答案和解析>>


同步练习册答案