三角函数的图象和性质.要注意定义域.值域.奇偶性.图象对称性.周期性.单调性.最值,正.余弦函数作图的“五点法 .以及图象的变换. 查看更多

 

题目列表(包括答案和解析)

已知函数

(1)求函数的最小正周期和最大值;

(2)求函数的增区间;

(3)函数的图象可以由函数的图象经过怎样的变换得到?

【解析】本试题考查了三角函数的图像与性质的运用。第一问中,利用可知函数的周期为,最大值为

第二问中,函数的单调区间与函数的单调区间相同。故当,解得x的范围即为所求的区间。

第三问中,利用图像将的图象先向右平移个单位长度,再把横坐标缩短为原来的 (纵坐标不变),然后把纵坐标伸长为原来的倍(横坐标不变),再向上平移1个单位即可。

解:(1)函数的最小正周期为,最大值为

(2)函数的单调区间与函数的单调区间相同。

 

所求的增区间为

所求的减区间为

(3)将的图象先向右平移个单位长度,再把横坐标缩短为原来的 (纵坐标不变),然后把纵坐标伸长为原来的倍(横坐标不变),再向上平移1个单位即可。

 

查看答案和解析>>

已知函数f(x)=sin(ωx+φ) (0<φ<π,ω>0)过点,函数y=f(x)图象的两相邻对称轴间的距离为.

(1) 求f(x)的解析式;

(2) f(x)的图象向右平移个单位后,得到函数y=g(x)的图象,求函数g(x)的单调递减区间.

【解析】本试题主要考查了三角函数的图像和性质的运用,第一问中利用函数y=f(x)图象的两相邻对称轴间的距离为.得,所以

第二问中,

   可以得到单调区间。

解:(Ⅰ)由题意得,,…………………1分

代入点,得…………1分

    ∴

(Ⅱ)   的单调递减区间为.

 

查看答案和解析>>


同步练习册答案