18. 过点Q 作圆C:x2+y2=r2()的切线.切点为D.且QD=4. (1)求r的值, (2)设P是圆C上位于第一象限内的任意一点.过点P作圆C的切线l.且l交x轴于点A.交y 轴于点B.设.求的最小值(O为坐标原点). 查看更多

 

题目列表(包括答案和解析)

(本小题满分15分)如图,已知圆Ox2+y2=2交x轴于AB两点,曲线C是以AB为长轴,离心率为的椭圆,其右焦点为F.若点P(-1,1)为圆O上一点,连结PF,过原点O作直线PF的垂线交椭圆C的右准线l于点Q.(1)求椭圆C的标准方程;

(2)证明:直线PQ与圆O相切.

查看答案和解析>>

(本小题满分15分)如图,已知圆Ox2+y2=2交x轴于AB两点,曲线C是以AB为长轴,离心率为的椭圆,其右焦点为F.若点P(-1,1)为圆O上一点,

连结PF,过原点O作直线PF的垂线交椭圆C

右准线l于点Q.(1)求椭圆C的标准方程;

(2)证明:直线PQ与圆O相切.

查看答案和解析>>

(本小题满分15分)

如图,已知圆Ox2+y2=2交x轴于AB两点,曲线C是以AB为长轴,离心率为的椭圆,其右焦点为F.若点P(-1,1)为圆O上一点,连结PF,过原点O作直线PF的垂线交椭圆C的右准线l于点Q

(1)求椭圆C的标准方程;

(2)证明:直线PQ与圆O相切.

查看答案和解析>>

(本小题满分15分)

如图,已知圆Ox2+y2=2交x轴于AB两点,曲线C是以AB为长轴,离心率为的椭圆,其右焦点为F.若点P(-1,1)为圆O上一点,连结PF,过原点O作直线PF的垂线交椭圆C的右准线l于点Q

(1)求椭圆C的标准方程;

(2)证明:直线PQ与圆O相切.

查看答案和解析>>

(本小题满分15分)如图,已知圆Ox2+y2=2交x轴于AB两点,曲线C是以AB为长轴,离心率为的椭圆,其右焦点为F.若点P(-1,1)为圆O上一点,连结PF,过原点O作直线PF的垂线交椭圆C的右准线l于点Q.(1)求椭圆C的标准方程;
(2)证明:直线PQ与圆O相切.

查看答案和解析>>


同步练习册答案