题目列表(包括答案和解析)
【解析】如图:|OB|=b,|O F1|=c.∴kPQ=,kMN=﹣.
直线PQ为:y=(x+c),两条渐近线为:y=x.由,得:Q(,);由,得:P(,).∴直线MN为:y-=﹣(x-),
令y=0得:xM=.又∵|MF2|=|F1F2|=2c,∴3c=xM=,解之得:,即e=.
【答案】B
已知数列中,,,数列中,,且点在直线上。
(1)求数列的通项公式;
(2)求数列的前项和;
(3)若,求数列的前项和;
【解析】第一问中利用数列的递推关系式
,因此得到数列的通项公式;
第二问中,在 即为:
即数列是以的等差数列
得到其前n项和。
第三问中, 又
,利用错位相减法得到。
解:(1)
即数列是以为首项,2为公比的等比数列
……4分
(2)在 即为:
即数列是以的等差数列
……8分
(3) 又
① ②
①- ②得到
|
A、4 | B、2 | C、5 | D、25 |
先阅读理解下面的例题,再按要求解答:
例题:解一元二次不等式.
解:∵,
∴.
由有理数的乘法法则“两数相乘,同号得正”,有
(1) (2)
解不等式组(1),得,
解不等式组(2),得,
故的解集为或,
即一元二次不等式的解集为或.
问题:求分式不等式的解集.
先阅读理解下面的例题,再按要求解答:
例题:解一元二次不等式.
解:∵,
∴.
由有理数的乘法法则“两数相乘,同号得正”,有
(1) (2)
解不等式组(1),得,
解不等式组(2),得,w.w.w.k.s.5.u.c.o.m
故的解集为或,
即一元二次不等式的解集为或.
问题:求分式不等式的解集.湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com