20.不等式<x2-4的解集是( ) (A){x} (B){x} (C){ x} (D){ x} 查看更多

 

题目列表(包括答案和解析)

如果关于的不等式的解集是[x1,x2]∪[x3,x4](x1<x2<x3<x4),则x1+x2+x3+x4=  ▲ 

 

查看答案和解析>>

已知函数 y = f (x) 是定义在R上的增函数,函数 y = f (x-1) 的图象关于点 (1, 0)对称. 若对任意的 x, y∈R,不等式 f (x2-6x + 21) + f (y2-8y) < 0 恒成立,则当 x > 3 时,x2 + y2 的取值范围是(  )

A.(3, 7)       B.(9, 25)        C.(13, 49)      D. (9, 49)

 

查看答案和解析>>

选修4—5;不等式选讲

已知f(x)=x|x-a|-2

(1)当a=1时,解不等式f(x)<|x-2|

(2)当x∈(0,1]时,f(x)<x2-1恒成立,求实数a的取值范围。

 

查看答案和解析>>

已知函数f(x)=ex-ax,其中a>0.

(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

单调递减;当单调递增,故当时,取最小值

于是对一切恒成立,当且仅当.        ①

时,单调递增;当时,单调递减.

故当时,取最大值.因此,当且仅当时,①式成立.

综上所述,的取值集合为.

(Ⅱ)由题意知,

,则.当时,单调递减;当时,单调递增.故当

从而

所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使成立.

【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.

 

查看答案和解析>>

  单调函数f(x)满足f(x + y)= f(x) + f(y),且f(1)=2,其定义域为R。   

 (1)求f(0)、f(2)、f(4)的值;    (2)解不等式f(x2 + 3 x) < 8。

查看答案和解析>>


同步练习册答案