题目列表(包括答案和解析)
设f(x)是定义在区间(1,+∞)上的函数,其导函数为(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得(x)=h(x)(x2-ax+1),则称函数f(x)具有性质P(a).
(1)设函数f(x)=lnx+(x>1),其中b为实数
(ⅰ)求证:函数f(x)具有性质P(b)
(ⅱ)求函数f(x)的单调区间;
(2)已知函数g(x)具有性质P(2),给定x1,x2∈(1,+∞),x1<x2,设m为实数,α=mx1+(1-m)x2,β=(1-m)x1+mx2,且α>1,β>1,若|g(α)-g(β)|<|g(x1)-g(x2)|,求m的取值范围.
设f(x)是定义在[-1,1]上的偶函数,g(x)与f(x)的图象关于直线x=1对称,当x∈[2,3]时,g(x)=2t(x-2)-4(x-2)3(t为常数).
(1)求f(x)的表达式.
(2)当t∈时,求f(x)在[0,1]上取最大值时对应的x值;猜想f(x)在[0,1]上的单调增区间,给予证明.
(3)当t>6时,是否存在t使f(x)的图象的最高点落在直线y=12上?若存在,求t的值;若不存在说明理由.
设函数f(x)是定义在R上的偶函数,并在区间(-∞,0)内单调递增,f(2a2+a+1)<f(3a2-2a+1)。 求a的取值范围,并在该范围内求函数y=()的单调递减区间.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com