交点: 直线l1:A1x+B1y+C1=0和l2:A2x+B2y+C2=0的公共点的坐标与方程组 的解一一对应. A1x+B1y+C1=0 A2x+B2y+C2=0 相交方程组 交点坐标就是方程组的解, 平行方程组 重合方程组 查看更多

 

题目列表(包括答案和解析)

(2012•黄浦区二模)已知定点F(2,0),直线l:x=2,点P为坐标平面上的动点,过点P作直线l的垂线,垂足为点Q,且
FQ
⊥(
PF
+
PQ
)
.设动点P的轨迹为曲线C.
(1)求曲线C的方程;
(2)过点F的直线l1与曲线C有两个不同的交点A、B,求证:
1
|AF|
+
1
|BF|
=
1
2

(3)记
OA
OB
的夹角为θ(O为坐标原点,A、B为(2)中的两点),求cosθ的取值范围.

查看答案和解析>>

已知直线l1:x-2y-1=0,直线l2:ax-by+1=0
(1)集合A={1,2,3,4,5,6},若a∈A、b∈A且随机取数,求l1与l2平行的概率;
(2)若a∈[0,6]、b∈[0,4]且随机取数,求l1与l2的交点位于第一象限的概率.

查看答案和解析>>

已知直线l1:ax-y+1=0与l2:x+ay+1=0,给出如下结论:
①不论a为何值时,l1与l2都互相垂直;
②当a变化时,l1与l2分别经过定点A(0,1)和B(-1,0);
③不论a为何值时,l1与l2都关于直线x+y=0对称;
④当a变化时,l1与l2的交点轨迹是以AB为直径的圆(除去原点).
其中正确的结论有(  )

查看答案和解析>>

已知圆C:(x-3)2+(y-4)2=4,直线l1过定点A(1,0).
(Ⅰ)若l1与圆相切,求l1的方程;
(Ⅱ)若l1与圆相交于P,Q两点,线段PQ的中点为M,又l1与l2:x+2y+2=0的交点为N,求证:AM•AN为定值.

查看答案和解析>>

直线L1:x-y=0与直线L2:x+y-10=0的交点坐标是(  )

查看答案和解析>>


同步练习册答案