10.已知函数..构造函数F(x)定义如下:当f(x)g(x)时. F(x)= g(x),当f(x)<g(x)时.F(x)= f(x). 那么F(x)( ) A. 有最大值3.最小值 B. 有最大值.无最小值 C. 有最大值3.无最小值 D. 无最大值.有最小值 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=3-|x|,g(x)=x2-4x+3,构造函数F(x),定义如下:当f(x)≥g(x)时,F(x)=g(x);当f(x)<g(x)时,F(x)=f(x),则F(x)在[-3,3](  )
A、有最大值3,最小值-1
B、有最大值7-2
7
,无最小值
C、有最大值3,无最小值
D、无最大值,也无最小值

查看答案和解析>>

已知函数y=f(x)满足f(a-tanθ)=cotθ-1,(其中,a、θ∈R均为常数)
(1)求函数y=f(x)的解析式;
(2)利用函数y=f(x)构造一个数列{xn},方法如下:
对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…
在上述构造过程中,如果xi(i=1,2,3,…)在定义域中,构造数列的过程继续下去;如果xi不在定义域中,则构造数列的过程停止.
①如果可以用上述方法构造出一个常数列{xn},求a的取值范围;
②如果取定义域中的任一值作为x1,都可以用上述方法构造出一个无穷数列{xn},求a实数的值.

查看答案和解析>>

已知函数f(x)=
x+1-a
a-x
(a∈R)

(1)证明函数y=f(x)的图象关于点(a,-1)成中心对称图形;
(2)当x∈[a+1,a+2]时,求证:f(x)∈[-2,-
3
2
]

(3)我们利用函数y=f(x)构造一个数列{xn},方法如下:对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述构造数列的过程中,如果xi(i=2,3,4,…)在定义域中,构造数列的过程将继续下去;如果xi不在定义域中,则构造数列的过程停止.
(i)如果可以用上述方法构造出一个常数列{xn},求实数a的取值范围;
(ii)如果取定义域中任一值作为x1,都可以用上述方法构造出一个无穷数列{xn},求实数a的值.

查看答案和解析>>

12、已知函数f(x)=2x-1,g(x)=1-x2,构造函数F(x),定义如下:当|f(x)|≥g(x)时,F(x)=|f(x)|,当|f(x)|<g(x)时,F(x)=-g(x),那么F(x)(  )

查看答案和解析>>

已知函数f(x)=3-2|x|,g(x)=x2-2x.构造函数y=F(x),定义如下:当f(x)≥g(x)时,F(x)=g(x);当f(x)<g(x)时,F(x)=f(x).那么y=F(x)(  )

查看答案和解析>>


同步练习册答案