设f(x)=x2+px+q,p,q∈R.M={x|x=f}. ⑴证明MN, ⑵当M={-1.3}时求N. 答案1. C 2.B 3.D 4. A 5. D 6. A 7. B 查看更多

 

题目列表(包括答案和解析)

记定义在[-1,1]上的函数f(x)=x2+px+q(p,q∈R)的最大值与最小值分别为M,m.又记h(p)=M-m.
(Ⅰ)当0≤p≤2时,求M、m(用p,q表示),并证明h(p)≥1;
(Ⅱ)写出h(p)的解析式(不必写出求解过程);
(Ⅲ)在所有形如题设的函数f(x)中,求出这样的f(x),使得|f(x)|的最大值为最小.

查看答案和解析>>

记定义在[-1,1]上的函数f(x)=x2+px+q(p,q∈R)的最大值与最小值分别为M,m.又记h(p)=M-m.
(Ⅰ)当0≤p≤2时,求M、m(用p,q表示),并证明h(p)≥1;
(Ⅱ)写出h(p)的解析式(不必写出求解过程);
(Ⅲ)在所有形如题设的函数f(x)中,求出这样的f(x),使得|f(x)|的最大值为最小.

查看答案和解析>>

记定义在[-1,1]上的函数f(x)=x2+px+q(p,q∈R)的最大值与最小值分别为M,m.又记h(p)=M-m.
(Ⅰ)当0≤p≤2时,求M、m(用p,q表示),并证明h(p)≥1;
(Ⅱ)写出h(p)的解析式(不必写出求解过程);
(Ⅲ)在所有形如题设的函数f(x)中,求出这样的f(x),使得|f(x)|的最大值为最小.

查看答案和解析>>


同步练习册答案