解:(I)如图.... 由三垂线定理逆定理知..所以是 山坡与所成二面角的平面角.则. . 设..则 . 记总造价为万元. 据题设有 当.即时.总造价最小. (II)设..总造价为万元.根据题设有 . 则.由.得. 当时..在内是减函数, 当时..在内是增函数. 故当.即(km)时总造价最小.且最小总造价为万元. (III)解法一:不存在这样的点.. 事实上.在上任取不同的两点..为使总造价最小.显然不能位于 与之间.故可设位于与之间.且=...总造价为万元.则.类似于讨论知...当且仅当.同时成立时.上述两个不等式等号同时成立.此时..取得最小值.点分别与点重合.所以不存在这样的点 .使沿折线修建公路的总造价小于(II)中得到的最小总造价. 解法二:同解法一得 . 当且仅当且.即同时成立时.取得最小值.以上同解法一. 本资料由 提供! 查看更多

 

题目列表(包括答案和解析)

(选修4-1)如图,在△ABC中,∠ABC=90°,以BC为直径的圆O交AC于点D,设E为AB的中点. 
(I)求证:直线DE为圆O的切线;
(Ⅱ)设CE交圆O于点F,求证:CD•CA=CF•CE
(选修4-4)在平面直角坐标系xoy中,圆C的参数方程为
x=4cosθ
y=4sinθ
(θ为参数),直线l经过点p(2,2),倾斜角a=
π
3

(I)写出圆C的标准方程和直线l的参数方程;
(Ⅱ)设直线l与圆C相交于A,B两点,求|PA|-|PB|的值.
(选修4-5)已知函数f(x)=|2x+1|,g(x)=|x|+a
(Ⅰ)当a=0时,解不等式f(x)≥g(x);
(Ⅱ)若存在x∈R,使得f(x)≤g(x)成立,求实数a的取值范围.

查看答案和解析>>

(2010•江门二模)旅行社为某旅行团预订单人房和双人房两种住房,每间单人房订金150元、每间双人房订金200元,每种房至少预订两间(含两间),旅行团不超过13人.
(1)设旅行社为这个旅行团预订了单人房x间、双人房y间,一共需要交订金z元.写出z的解析式和x、y所满足的约束条件,并求它的所有可行解(xi,yi),i=1、2、…n;
(2)如图是根据(1)计算这个旅行团最多需交订金S(单位:元)的程序框图.则处理框①和判断框②中的语句分别是什么?输出的S是多少?

查看答案和解析>>

精英家教网选作题:考生任选一题作答,如果多做,则按所做的第一题计分.
A 如图,△ABC的角平分线AD的延长线交它的外接圆于点E.
(I)证明:△ABE∽△ADC
(II)若△ABC的面积S=
1
2
AD•AE
,求∠BAC的大小.
B 已知曲线C1
x=-4+cost
y=3+sint
(t为参数),C2
x=8cosθ
y=3sinθ
(θ为参数).
(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;
(2)若C1上的点P对应的参数为t=
π
2
,Q为C2上的动点,求PQ中点M到直线C3
x=3+2t
y=-2+t
(t为参数)距离的最小值.                
C 已知函数f(x)=|x-a|.
(Ⅰ)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.

查看答案和解析>>

精英家教网请考生在第(1),(2),(3)题中任选一题作答,如果多做,则按所做的第一题记分.
(1)选修4-1:几何证明选讲
如图,在△ABC中,D是AC的中点,E是BD的中点,AE的延长线交BC于F.
(Ⅰ)求
BF
FC
的值;
(Ⅱ)若△BEF的面积为S1,四边形CDEF的面积为S2,求S1:S2的值.
(2)选修4-4:坐标系与参数方程
以直角坐标系的原点O为极点,a=
π
6
轴的正半轴为极轴,且两个坐标系取相等的单位长度.已知直线l经过点P(1,1),倾斜角a=
π
6

( I)写出直线l的参数方程;
( II)设l与圆ρ=2相交于两点A、B,求点P到A、B两点的距离之积.
(3)选修4-5:不等式选讲
已知函数f(x)=|2x+1|+|2x-3|.
(I)求不等式f(x)≤6的解集;
(II)若关于x的不等式f(x)>a恒成立,求实数a的取值范围.

查看答案和解析>>

已知定义在区间上的函数的图象关于直线对称,当时,函数的图象如图.

(I)求函数上的表达式;

(II)求方程的解.

查看答案和解析>>


同步练习册答案