设函数().其中. (Ⅰ)当时.求曲线在点处的切线方程, (Ⅱ)当时.求函数的极大值和极小值, (Ⅲ)当时.证明存在.使得不等式对任意的恒成立. 本小题主要考查运用导数研究函数的性质.曲线的切线方程.函数的极值.解不等式等基础知识.考查综合分析和解决问题的能力及分类讨论的思想方法.满分14分. 查看更多

 

题目列表(包括答案和解析)

设函数,其中

(I)若函数图象恒过定点P,且点P关于直线的对称点在的图象上,求m的值;

(Ⅱ)当时,设,讨论的单调性;

(Ⅲ)在(I)的条件下,设,曲线上是否存在两点P、Q,使△OPQ(O为原点)是以O为直角顶点的直角三角形,且斜边的中点在y轴上?如果存在,求a的取值范围;如果不存在,说明理由.

 

查看答案和解析>>

设函数,其中
(I)若函数图象恒过定点P,且点P关于直线的对称点在的图象上,求m的值;
(Ⅱ)当时,设,讨论的单调性;
(Ⅲ)在(I)的条件下,设,曲线上是否存在两点P、Q,使△OPQ(O为原点)是以O为直角顶点的直角三角形,且斜边的中点在y轴上?如果存在,求a的取值范围;如果不存在,说明理由.

查看答案和解析>>

设函数,其中
(I)若函数图象恒过定点P,且点P关于直线的对称点在的图象上,求m的值;
(Ⅱ)当时,设,讨论的单调性;
(Ⅲ)在(I)的条件下,设,曲线上是否存在两点P、Q,使△OPQ(O为原点)是以O为直角顶点的直角三角形,且斜边的中点在y轴上?如果存在,求a的取值范围;如果不存在,说明理由.

查看答案和解析>>

设函数,其中a≠0.
( I )若函数y=g(x)图象恒过定点P,且点P关于直线的对称点在y=f(x)的图象上,求m的值;
(Ⅱ)当a=8时,设F(x)=f′(x)+g(x+1),讨论F(x)的单调性;
(Ⅲ)在(I)的条件下,设,曲线y=G(x)上是否存在两点P、Q,使△OPQ(O为原点)是以O为直角顶点的直角三角形,且斜边的中点在y轴上?如果存在,求a的取值范围;如果不存在,说明理由.

查看答案和解析>>

设函数,其中a>0,曲线y=f(x)在点P(0,f(0))处的切线方程为y=1.
(Ⅰ)确定b,c的值;
(Ⅱ)设曲线y=f(x)在点(x1,f(x1))及(x2,f(x2))处的切线都过点(0,2).证明:当x1≠x2时,f′(x1)≠f′(x2);
(Ⅲ)若过点(0,2)可作曲线y=f(x)的三条不同切线,求a的取值范围.

查看答案和解析>>


同步练习册答案