11.已知A,点P在 x轴上,求使-取得最大值的点 P坐标是 A. C. 查看更多

 

题目列表(包括答案和解析)

已知圆Mx2+y2-2tx-6t-10=0,椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0),若椭圆C与x轴的交点A(5,y0)到其右准线的距离为
10
3
;点A在圆M外,且圆M上的点和点A的最大距离与最小距离之差为2.
(1)求圆M的方程和椭圆C的方程;
(2)设点P为椭圆C上任意一点,自点P向圆M引切线,切点分别为A、B,请试着去求
P
A•
P
B
的取值范围;
(3)设直线系M:xcosθ+(y-3)sinθ=1(θ∈R);求证:直线系M中的任意一条直线l恒与定圆相切,并直接写出三边都在直线系M中的直线上的所有可能的等腰直角三角形的面积.

查看答案和解析>>

已知直线x-2y+4=0经过椭圆C:(a>b>0)的左顶点A和上顶点D,椭圆C的右顶点为B,点P是椭圆C上位于轴上方的动点,直线AP,BP与直线l:x=5分别交于M,N两点.
(1)求椭圆C的方程;
(2)求线段MN的长度的最小值;
(3)当线段MN的长度最小时,Q点在椭圆上运动,记△BPQ的面积为S,当S在(0,+∞)上变化时,讨论S的大小与Q点的个数之间的关系。

查看答案和解析>>

已知椭圆C:(a>b>0),F1、F2分别为其左、右焦点,点P(,1)在椭圆C上,且PF2垂直于x轴.
(1)求椭圆C的方程;(2)设坐标平面上有两点A(-5,-4)、B(3,0),过点P作直线l,交线段AB于点D,并且直线l将△PAB分成的两部分图形的面积之比为5:3,求D点的坐标.

查看答案和解析>>

已知椭圆C:(a>b>0),F1、F2分别为其左、右焦点,点P(,1)在椭圆C上,且PF2垂直于x轴.
(1)求椭圆C的方程;(2)设坐标平面上有两点A(-5,-4)、B(3,0),过点P作直线l,交线段AB于点D,并且直线l将△PAB分成的两部分图形的面积之比为5:3,求D点的坐标.

查看答案和解析>>

本题(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
已知矩阵A=
a2
1b
有一个属于特征值1的特征向量
α
=
2
-1

(Ⅰ) 求矩阵A;
(Ⅱ) 矩阵B=
1-1
01
,点O(0,0),M(2,-1),N(0,2),求△OMN在矩阵AB的对应变换作用下所得到的△O'M'N'的面积.
(2)选修4-4:坐标系与参数方程
已知直角坐标系xOy中,直线l的参数方程为
x=t-3 
y=
3
(t为参数).以直角坐标系xOy中的原点O为 极点,x轴的非负半轴为极轴,圆C的极坐标方程为ρ2-4ρcosθ+3=0,
(Ⅰ) 求l的普通方程及C的直角坐标方程;
(Ⅱ) P为圆C上的点,求P到l距离的取值范围.
(3)选修4-5:不等式选讲
已知关于x的不等式:|x-1|+|x+2|≥a2+2|a|-5对任意x∈R恒成立,求实数a的取值范围.

查看答案和解析>>


同步练习册答案