11.已知函数. (1)确定在区间 [3,5]上的单调性并证明, (2)求的最值. 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)是定义域为R的可导函数,且满足(x2+3x-4)f′(x)<0,给出下列说法:
①函数f(x)的单调递减区间是(-∞,-4)∪(1,+∞);
②f(x)有2个极值点;
③f(0)+f(2)>f(-5)+f(-3);
④f(x)在(-1,4)上单调递增.
其中不正确的说法是(  )

查看答案和解析>>

已知函数f(x)是定义域为R的可导函数,且满足(x2+3x-4)f′(x)<0,给出下列说法:
①函数f(x)的单调递减区间是(-∞,-4)∪(1,+∞);
②f(x)有2个极值点;
③f(0)+f(2)>f(-5)+f(-3);
④f(x)在(-1,4)上单调递增.
其中不正确的说法是( )
A.②③④
B.①④
C.①③
D.①③④

查看答案和解析>>

已知函数f(x)是定义域为R的可导函数,且满足(x2+3x-4)f′(x)<0,给出下列说法:
①函数f(x)的单调递减区间是(-∞,-4)∪(1,+∞);
②f(x)有2个极值点;
③f(0)+f(2)>f(-5)+f(-3);
④f(x)在(-1,4)上单调递增.
其中不正确的说法是( )
A.②③④
B.①④
C.①③
D.①③④

查看答案和解析>>

已知函数f(x)是定义域为R的可导函数,且满足(x2+3x-4)f′(x)<0,给出下列说法:
①函数f(x)的单调递减区间是(-∞,-4)∪(1,+∞);
②f(x)有2个极值点;
③f(0)+f(2)>f(-5)+f(-3);
④f(x)在(-1,4)上单调递增.
其中不正确的说法是


  1. A.
    ②③④
  2. B.
    ①④
  3. C.
    ①③
  4. D.
    ①③④

查看答案和解析>>

给出下列四个命题:
①函数y=|x|与函数表示同一个函数;
②已知函数f(x+1)=x2,则f(e)=e2-1
③已知函数f(x)=4x2+kx+8在区间[5,20]上具有单调性,则实数k的取值范围是(-∞,40]∪[160,+∞)
④已知f(x)、g(x)是定义在R上的两个函数,对任意x、y∈R满足关系式f(x+y)+f(x-y)=2f(x)•g(y),且f(0)=0,但x≠0时f(x)•g(x)≠0则函数f(x)、g(x)都是奇函数.
其中正确命题的个数是( )
A.1个
B.2个
C.3个
D.0个

查看答案和解析>>


同步练习册答案