题目列表(包括答案和解析)
已知在递增等差数列{an}中,a1=2,a1,a3,a7成等比数列,{bn}的前n项和为Sn,且Sn=2n+1-2.
(1)求数列{an}、{bn}的通项公式;
(2)设cn=abn,求数列{cn}的前n项和Tn.
已知等差数列{an}的首项a1 =4, 且a2+a7+a12=-6.
(1)求数列{an}的通项公式an与前n项和Sn;
(2)将数列{an}的前四项抽去其中一项后,剩下三项按原来顺序恰为等比数列{bn}的前三项,记{bn}的前n项和为Tn, 若存在m∈N+, 使对任意n∈N+总有Tn<Sm+λ恒成立, 求实数λ的最小值.
已知等比数列{an}的首项为a1=2,公比为q(q为正整数),且满足3a3是8a1与a5的等差中项;数列{bn}满足2n2-(t+bn)n+bn=0(t∈R,n∈N*).
(1)求数列{an}的通项公式;
(2)试确定t的值,使得数列{bn}为等差数列;
(3)当{bn}为等差数列时,对任意正整数k,在ak与ak+1之间插入2共bk个,得到一个新数列{cn}.设Tn是数列{cn}的前n项和,试求满足Tm=2cm+1的所有正整数m的值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com