38.解:(1)∵由最高点D()运动到相邻最低点时.函数图形与的交点的坐标为(). ∴. 从而.. 函数解析式为 得函数. 当时.. ∴当.即时.函数取得最小值. 当.即时.函数取得最大值2. (3)由题意得... 由得. 即的单调减区间为. 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)(x∈R)满足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的实数x只有一个.

(1)求函数f(x)的表达式;

(2)若数列{an}满足a1,an+1=f(an),bn-1,n∈N*,证明数列{bn}是等比数列,并求出{bn}的通项公式;

(3)在(2)的条件下,证明:a1b1+a2b2+…+anbn<1(n∈N*).

【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.

由f(x)=2x只有一解,即=2x,

也就是2ax2-2(1+b)x=0(a≠0)只有一解,

∴b=-1.∴a=-1.故f(x)=.…………………………………………4分

(2)an+1=f(an)=(n∈N*),bn-1, ∴

∴{bn}为等比数列,q=.又∵a1,∴b1-1=

bn=b1qn-1n-1n(n∈N*).……………………………9分

(3)证明:∵anbn=an=1-an=1-

∴a1b1+a2b2+…+anbn+…+<+…+

=1-<1(n∈N*).

 

查看答案和解析>>

设函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|≤π)的图象的最高点D的坐标为(2,
2
)
,由最高点运动到相邻的最低点F时,曲线与x轴相交于点E(6,0).
(1)求A、ω、φ的值;
(2)求函数y=g(x),使其图象与y=f(x)图象关于直线x=8对称.

查看答案和解析>>

设函数f(x)=Asin(ωx+φ)A>0,ω>0,|φ|<
π
2
)的最高点D的坐标为(
π
8
,2
),由最高点D运动到相邻最低点时,函数图形与x的交点的坐标为(
8
,0
);
(1)求函数f(x)的解析式.
(2)当x∈[-
π
4
π
4
]
时,求函数f(x)的最大值和最小值以及分别取得最大值和最小值时相应的自变量x的值.
(3)将函数y=f(x)的图象向右平移
π
4
个单位,得到函数y=g(x)的图象,求函数y=g(x)的单调减区间.

查看答案和解析>>

一弹簧挂着小球作上下振动,经研究表明,时间x(s)与小球相对于平衡位置的高度y(cm)=f(x)的函数关系式符合某一正弦曲线f(x)=Asin(ωx+φ) (其中Α>0,ω>0,|φ|≤π),且离平衡位置最高点为(2,
2
),由最高点到相邻下一次图象交x轴于点(6,0);  (1)求经多少时间小球往复振动一次?(2)确定g(x)表达式,使其图象与f(x)关于直线x=1对称.

查看答案和解析>>

设函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<π)最高点D的坐标为(2,3).由最高点运动到相邻的最低点时,函数曲线与x轴的交点为(6,0).
(1)求A,ω和φ的值;
(2)求出该函数单调增区间.

查看答案和解析>>


同步练习册答案