4.设向量a = . b= .由向量a与b的夹角等于 45° 120° 查看更多

 

题目列表(包括答案和解析)

已知向量 
a
=(1,2),
b
=(cosα,sinα),设
m
=
a
+t
b
(t为实数).
(1)若α=
π
4
,求当|
m
|取最小值时实数t的值;
(2)若
a
b
,问:是否存在实数t,使得向量
a
-
b
和向量
m
的夹角为
π
4
,若存在,请求出t的值;若不存在,请说明理由.
(3)若
a
m
,求实数t的取值范围A,并判断当t∈A时函数f(t)=(t,-3)•(t2,t)的单调性.

查看答案和解析>>

已知向量
a
=(
3
sinωx,cosωx),
b
=(cosωx,3cosωx),ω>0,设f(x)=
a
b
,且f(x)的最小正周期为π.
(1)求ω的值;
(2)求函数f(x)的单调递增区间;
(3)函数f(x)的图象可由函数y=sin2x经过怎样的变换得到.

查看答案和解析>>

由空间向量基本定理可知,空间任意向量
p
可由三个不共面的向量
a
b
c
唯一确定地表示为
p
=x
a
+y
b
+z
c
,则称(x,y,z)为基底
a
b
c
下的广义坐标.特别地,当
a
b
c
为单位正交基底时,(x,y,z)为直角坐标.设
i
j
k
分别为直角坐标中x,y,z正方向上的单位向量,则空间直角坐标(1,2,3)在基底
i
+
j
i
-
j
k
下的广义坐标为
3
2
,-
1
2
,3
3
2
,-
1
2
,3

查看答案和解析>>

已知点A(-1,0)、B(1,0),△ABC的周长为2+2
2
.记动点C的轨迹为曲线W.
(1)直接写出W的方程(不写过程);
(2)经过点(0,
2
)且斜率为k的直线l与曲线W 有两个不同的交点P和Q,是否存在常数k,使得向量
OP
+
QO
与向量(-
2
,1)
共线?如果存在,求出k的值;如果不存在,请说明理由.
(3)设W的左右焦点分别为F1、F2,点R在直线l:x-
3
y+8=0上.当∠F1RF2取最大值时,求
|RF1|
|RF2|
的值.

查看答案和解析>>

设 A(x1,y1)、B(x2,y2)是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)上的两点,O为坐标原点,向量
m
=(
x1
a
y1
b
),
n
=(
x2
a
y2
b
)
m
n
=0

(1)若A点坐标为(a,0),求点B的坐标;
(2)设
OM
=cosθ•
OA
+sinθ•
OB
,证明点M在椭圆上;
(3)若点P、Q为椭圆 上的两点,且
PQ
OB
,试问:线段PQ能否被直线OA平分?若能平分,请加以证明;若不能平分,请说明理由.

查看答案和解析>>


同步练习册答案