题目列表(包括答案和解析)
已知函数,
(Ⅰ)求函数的单调递减区间;
(Ⅱ)令函数(),求函数的最大值的表达式;
【解析】第一问中利用令,,
∴,
第二问中,=
=
=令, ,则借助于二次函数分类讨论得到最值。
(Ⅰ)解:令,,
∴,
∴的单调递减区间为:…………………4分
(Ⅱ)解:=
=
=
令, ,则……………………4分
对称轴
① 当即时,=……………1分
② 当即时,=……………1分
③ 当即时, ……………1分
综上:
已知函数,若函数的最小值是,且,对称轴是,.
(1)求的解析式;
(2)求的值;
(3)在(1)的条件下求在区间上的最小值.
已知函数,若函数的最小值是,且,对称轴是,.
(1)求的解析式;
(2)求的值;
(3)在(1)的条件下求在区间上的最小值.
已知函数,且函数的图象关于原点
对称,其图象在x=3处的切线方程为
(1)求的解析式;
(2)是否存在区间[m,n],使得函数的定义域和值域均为[m,n],且其解析式为 的解析式?若存在,求出这样一个区间[m,n];若不存在,则说明理由.
已知,, 且
(1) 求函数的解析式;
(2) 当时, 的最小值是-4 , 求此时函数的最大值, 并求出相应的的值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com