正项数列{}的前n项和为Sn.q为非零常数.已知对任意正整数n, m.当时. 总成立. (1)求证:数列{}是等比数列, (2)若互不相等的正整数n, m, k成等差数列.比较 的大小, (3)若正整数n, m, k成等差数列.求证:+≥. 证明:(1)因为对任意正整数n, m.当n > m时.总成立 所以当≥2时:.即.且也适合.又>0. 故当≥2时:.即{}是等比数列 (2)若.则 所以 若.则.. 所以 ①若 ②若 (3)若.则所以 ≥ 若.则.. 所以≥ 又因为 ≤. 所以≥≥. 综上可知:若正整数n, m, k成等差数列.不等式 +≥总成立 (当且仅当时取“= ) 查看更多

 

题目列表(包括答案和解析)

设正项数列{an}的前项和为Sn,q为非零常数.已知对任意正整数n,m,当n>m时,Sn-Sm=qm•Sn-m总成立.
(1)求证数列{an}是等比数列; 
(2)若正整数n,m,k成等差数列,求证:
1
Sn
+
1
Sk
2
Sm

查看答案和解析>>

设正项数列{an}的前项和为Sn,q为非零常数.已知对任意正整数n,m,当n>m时,Sn-Sm=qm•Sn-m总成立.
(1)求证数列{an}是等比数列; 
(2)若正整数n,m,k成等差数列,求证:+

查看答案和解析>>

数列{an}的前n项和记为Sn,前kn项和记为Skn(n,k∈N*),对给定的常数k,若
S(k+1)n
Skn
是与n无关的非零常数t=f(k),则称该数列{an}是“k类和科比数列”.
(理科)(1)已知Sn=(
an+1
2
)2an>0
,求数列{an}的通项公式;
(2)证明(1)的数列{an}是一个“k类和科比数列”;
(3)设正数列{cn}是一个等比数列,首项c1,公比Q(Q≠1),若数列{lgcn}是一个“k类和科比数列”,探究c1与Q的关系.

查看答案和解析>>

数列{an}的前n项和记为Sn,前kn项和记为Skn(n,k∈N*),对给定的常数k,若是与n无关的非零常数t=f(k),则称该数列{an}是“k类和科比数列”.
(理科)(1)已知,求数列{an}的通项公式;
(2)证明(1)的数列{an}是一个“k类和科比数列”;
(3)设正数列{cn}是一个等比数列,首项c1,公比Q(Q≠1),若数列{lgcn}是一个“k类和科比数列”,探究c1与Q的关系.

查看答案和解析>>

数列{an}的前n项和记为Sn,前kn项和记为Skn(n,k∈N*),对给定的常数k,若是与n无关的非零常数t=f(k),则称该数列{an}是“k类和科比数列”.
(理科)(1)已知,求数列{an}的通项公式;
(2)证明(1)的数列{an}是一个“k类和科比数列”;
(3)设正数列{cn}是一个等比数列,首项c1,公比Q(Q≠1),若数列{lgcn}是一个“k类和科比数列”,探究c1与Q的关系.

查看答案和解析>>


同步练习册答案