已知:一动圆圆心在抛物线x2=4y上运动.圆过定点 P(0.1)且恒与定直线L相切.则直线L的方程为 A.x=-2 B.x=-1 C.y=-1 D.y=-2 查看更多

 

题目列表(包括答案和解析)

已知椭圆C的中心在原点,离心率等于
23
,右焦点F是圆(x-1)2+y2=1的圆心,过椭圆上位于y轴左侧的一动点P作该圆的两条切线分别交y轴于M、N两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ) 求线段MN的长的最大值,并求出此时点P的坐标.

查看答案和解析>>

已知,圆,一动圆在轴右侧与轴相切,同时与圆相外切,此动圆的圆心轨迹为曲线C,曲线E是以为焦点的椭圆。

(1)求曲线C的方程;

(2)设曲线C与曲线E相交于第一象限点P,且,求曲线E的标准方程;

(3)在(1)、(2)的条件下,直线与椭圆E相交于A,B两点,若AB的中点M在曲线C上,求直线的斜率的取值范围。

 

查看答案和解析>>

已知三点A(0,4)、B(0,-4)、C(7,-3),△ABC外接圆为圆M(圆心M).
(1)求圆M的方程;
(2)若N(-7,0),R在圆M上运动,平面上一动点P满足
RP
=4
PN
,求动点P的轨迹方程.

查看答案和解析>>

已知圆心为C的圆经过点A(1,4),B(3,6),且圆心C在直线4x-3y=0上.
(1)求圆C的方程;
(2)已知直线l:y=x+m(m为正实数),若直线l截圆C所得的弦长为
14
,求实数m的值.
(3)已知点M(-4,0),N(4,0),且P为圆C上一动点,求|PM|2+|PN|2的最小值.

查看答案和解析>>

已知一动圆P与定圆(x-1)2+y2=1和y轴都相切,
(1)求动圆圆心P的轨迹M的方程;
(2)过定点A(1,2),作△ABC,使∠BAC=90°,且动点B,C在P的轨迹M上移动(B,C不在坐标轴上),问直线BC是否过某定点?证明你的结论.

查看答案和解析>>


同步练习册答案