8.在直二面角棱AB上取一点P.过P分别在平面内作与棱成45°角的斜线PC.PD.则∠CPD的大小是 ( ) A.45° B.60° C.120° D.60°或120° 查看更多

 

题目列表(包括答案和解析)

在直二面角 α-AB-β 的棱 AB 上取一点 P,过 P 分别在 α、β 两个平面内作与棱成 45° 的斜线 PC、PD,那么∠CPD的大小为(  )

查看答案和解析>>

如果在直二面角α-AB-β的棱上取一点P,过P点分别在α、β内作与棱成45°角的射线,则这两条射线所成的角是


  1. A.
    45°
  2. B.
    60°
  3. C.
    120°
  4. D.
    60°或120°

查看答案和解析>>

如果在直二面角α-AB-β的棱上取一点P,过P点分别在α、β内作与棱成45°角的射线,则这两条射线所成的角是   

[  ]

A45°   B60°   C120°   D60°或120°

查看答案和解析>>

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)证明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.

 

【解析】解法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)证明:易得于是,所以

(2) ,设平面PCD的法向量

,即.不防设,可得.可取平面PAC的法向量于是从而.

所以二面角A-PC-D的正弦值为.

(3)设点E的坐标为(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)证明:由,可得,又由,,故.又,所以.

(2)如图,作于点H,连接DH.由,,可得.

因此,从而为二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值为.

(3)如图,因为,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF. 故或其补角为异面直线BE与CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>


同步练习册答案