17.已知曲线C是与两个定点M1(-4, 0), M2(-2, 0)的距离的比为的点的轨迹.直线l过点(-2, 5)且被曲线C截得的线段的长等于4.求曲线C和直线l的方程. 查看更多

 

题目列表(包括答案和解析)

已知为平面内的两个定点,动点P满足|PF1|+|PF2|=4,记点P的轨迹为曲线Γ.
(Ⅰ)求曲线Γ的方程;
(Ⅱ)判断原点O关于直线x+y-1=0的对称点R是否在曲线Γ包围的范围内?说明理由.
(注:点在曲线Γ包围的范围内是指点在曲线Γ上或点在曲线Γ包围的封闭图形的内部)
(Ⅲ)设点O为坐标原点,点A,B,C是曲线Γ上的不同三点,且.试探究:直线AB与OC的斜率之积是否为定值?证明你的结论.

查看答案和解析>>

已知椭圆C:
x2
a2
+
y2
b2
=1 (a>b>0)
的离心率为e=
3
3
,以原点为圆心,椭圆短半轴长为半径的圆与直线x-y+2=0相切,A,B分别是椭圆的左右两个顶点,P为椭圆C上的动点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若P与A,B均不重合,设直线PA与PB的斜率分别为k1,k2,证明:k1•k2为定值;
(Ⅲ)M为过P且垂直于x轴的直线上的点,若
|OP|
|OM|
,求点M的轨迹方程,并说明轨迹是什么曲线.

查看答案和解析>>

已知圆C经过点A(1,2)、B(3,0),并且直线m:2x-3y=0平分圆C.
(1)求圆C的方程;
(2)过点D(0,3),且斜率为k的直线l与圆C有两个不同的交点E、F,若|EF|≥2
3
,求k的取值范围;
(3)若圆C关于点(
3
2
,1)
对称的曲线为圆Q,设M(x1,y1)、P(x2,y2)(x1≠±x2)是圆Q上的两个动点,点M关于原点的对称点为M1,点M关于x轴的对称点为M2,如果直线PM1、PM2与y轴分别交于(0,m)和(0,n),问m•n是否为定值?若是求出该定值;若不是,请说明理由.

查看答案和解析>>

已知椭圆C :的离心率为,以原点为圆心,椭圆短半轴长为半径的圆与直线x-y+2=0相切,A,B分别是椭圆的左右两个顶点,P为椭圆C上的动点,
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若P与A,B均不重合,设直线PA与PB的斜率分别为k1,k2,证明:k1·k2为定值;
(Ⅲ)M为过P且垂直于x轴的直线上的点,若,求点M的轨迹方程,并说明轨迹是什么曲线。

查看答案和解析>>

已知椭圆C:=1(a>b>0)的离心率为e=,以原点为圆心,椭圆短半轴长为半径的圆与直线x-y+2=0相切,A,B分别是椭圆的左右两个顶点,P为椭圆C上的动点.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)若P与A,B均不重合,设直线PA与PB的斜率分别为k1,k2,证明:k1·k2为定值;

(Ⅲ)M为过P且垂直于x轴的直线上的点,若=λ,求点M的轨迹方程,并说明轨迹是什么曲线.

查看答案和解析>>


同步练习册答案