20.原不等式可化为.于是 ...2分 当时.原不等式的解集为, ...3分 当时.原不等式可化为 ∴当时.原不等式的解集为 ...5分 当时.原不等式的解集为 ...7分 当时.原不等式的解集为 ...9分 当时.原不等式可化为. ∴原不等式的解集为 ...12分 查看更多

 

题目列表(包括答案和解析)

解关于的不等式:

【解析】解:当时,原不等式可变为,即            (2分)

 当时,原不等式可变为         (5分)  若时,的解为            (7分)

 若时,的解为         (9分) 若时,无解(10分) 若时,的解为  (12分综上所述

时,原不等式的解为

时,原不等式的解为

时,原不等式的解为

时,原不等式的解为

时,原不等式的解为:

 

查看答案和解析>>

纠正以下解题过程的错误:

题:若|ab|+1=|a|+|b|,a,b为实数,求a,b.

解:原式可化为(|a|-1)(|b|-1)=0,

∴|a|=1,|b|=1,①

∴a=±1,b=±1,②

纠正①________;②________

查看答案和解析>>

下列四个命题(1)面积相等的两个三角形全等  (2)在实数集内,负数不能开平方  (3)如果m2+n2≠0(m∈R,.n∈R),那么m•n≠0(4)一元二次不等式都可化为一元一次不等式组求解.其中正确命题的个数是(  )

查看答案和解析>>

已知问题:上海迪斯尼工程某 施工工地上有一堵墙,工程队欲将长为4a(a>0)的建筑护栏(厚度不计)借助这堵墙围成矩形的施工区域(如图1),求所得区域的最大面积.解决这一问题的一种方法是:作出护栏关于墙面的轴对称图形(如图2),则原问题转化为“已知矩形周长为8a,求面积的最大值”从而轻松获解.参考这种借助对称图形解决问题的方法,对于下列情形:已知两堵墙互相垂直围成“L”形,工程队将长为4a(a>0)的建筑护栏借助墙角围成四边形的施工区域(如图3),可求得所围区域的最大面积为
2(
2
+1)a2
2(
2
+1)a2

查看答案和解析>>

下列四个命题(1)面积相等的两个三角形全等  (2)在实数集内,负数不能开平方  (3)如果m2+n2≠0(m∈R,.n∈R),那么m•n≠0(4)一元二次不等式都可化为一元一次不等式组求解.其中正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>


同步练习册答案