已知抛物线C1:y=x2,C2:y=2x2-3x+3,直线l:y=kx+m.l与C1.C2都相交.如图所示A.B.C.D为从左至右的四个交点. (1) 当k固定时.求证|AB|-|CD|为定值, (2) 当k=1时.求证|AB|+|CD|=( (3) 在k=1的条件下.m取怎样的值时.|AB|+|CD|取最小值.最小值是多少? 查看更多

 

题目列表(包括答案和解析)

已知抛物线C1:y=x2+2x和C:y=-x2+a,如果直线l同时是C1和C2的切线,称l是C1和C2的公切线,公切线上两个切点之间的线段,称为公切线段.
(Ⅰ)a取什么值时,C1和C2有且仅有一条公切线?写出此公切线的方程;
(Ⅱ)若C1和C2有两条公切线,证明相应的两条公切线段互相平分.

查看答案和解析>>

已知抛物线C1:y=x2+2xC2:y=-x2+a.a取何值时C1和C2有且仅有一条公切线l,求出公切线l的方程.

查看答案和解析>>

已知抛物线C1:y=x2,F为抛物线的焦点,椭圆C2
x2
2
+
y2
a2
=1
(0<a<2);
(1)若M是C1与C2在第一象限的交点,且|MF|=
3
4
,求实数a的值;
(2)设直线l:y=kx+1与抛物线C1交于A,B两个不同的点,l与椭圆C2交于P,Q两个不同点,AB中点为R,PQ中点为S,若O在以RS为直径的圆上,且k 2
1
2
,求实数a的取值范围.

查看答案和解析>>

已知抛物线C1:y=2x2与抛物线C2关于直线y=-x对称,则C2的准线方程为(  )
A、x=
1
8
B、x=-
1
8
C、x=
1
2
D、x=-
1
2

查看答案和解析>>

已知抛物线C1:y=x2,椭圆C2:x2+
y24
=1.
(1)设l1,l2是C1的任意两条互相垂直的切线,并设l1∩l2=M,证明:点M的纵坐标为定值;
(2)在C1上是否存在点P,使得C1在点P处切线与C2相交于两点A、B,且AB的中垂线恰为C1的切线?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>


同步练习册答案