椭圆的一个焦点是F(0.2).则等于 查看更多

 

题目列表(包括答案和解析)

如图,椭圆中心在原点,F为左焦点,当时其离心率为,此类椭圆被称为“黄金椭圆”.

(1)类比“黄金椭圆”,可推算出“黄金双曲线”的离心率等于多少?(只要写出结论即可)

(2)已知椭圆E:的一个焦点f(c,0)(c>0),试证:若a,b,c不是等比数列,则E一定不是“黄金椭圆”.

查看答案和解析>>

以下五个命题中:
①若两直线平行,则两直线斜率相等;
②设F1、F2为两个定点,a为正常数,且||PF1|-|PF2||=2a,则动点P的轨迹为双曲线;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④对任意实数k,直线l:kx-y+1-k=0与圆x2+y2-2y-4=0的位置关系是相交;
⑤P为椭圆
x2
a2
+
y2
b2
=1(a>b>0)上一点,F为它的一个焦点,则以PF为直径的圆与以长轴为直径的圆相切.
其中真命题的序号为
③④⑤
③④⑤
.(写出所有真命题的序号)

查看答案和解析>>

定义:离心率数学公式的椭圆为“黄金椭圆”,已知椭圆数学公式的一个焦点为F(c,0)(c>0),P为椭圆E上的任意一点.
(1)试证:若a,b,c不是等比数列,则E一定不是“黄金椭圆”;
(2)没E为黄金椭圆,问:是否存在过点F、P的直线l,使l与y轴的交点R满足数学公式?若存在,求直线l的斜率k;若不存在,请说明理由;
(3)已知椭圆E的短轴长是2,点S(0,2),求使数学公式取最大值时点P的坐标.

查看答案和解析>>

定义:离心率的椭圆为“黄金椭圆”,已知椭圆的一个焦点为F(c,0)(c>0),P为椭圆E上的任意一点.
(1)试证:若a,b,c不是等比数列,则E一定不是“黄金椭圆”;
(2)没E为黄金椭圆,问:是否存在过点F、P的直线l,使l与y轴的交点R满足?若存在,求直线l的斜率k;若不存在,请说明理由;
(3)已知椭圆E的短轴长是2,点S(0,2),求使取最大值时点P的坐标.

查看答案和解析>>

定义:离心率e=
5
-1
2
的椭圆为“黄金椭圆”,已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的一个焦点为F(c,0),p为椭圆E上任意一点.
(1)试证:若a、b、c不是等比数列,则E一定不是“黄金椭圆”;
(2)若E为黄金椭圆;问:是否存在过点F,P的直线l;使l与y轴的交点R满足
RP
=-2
PF
;若存在,求直线l的斜率K;若不存在,说明理由.

查看答案和解析>>


同步练习册答案