设函数f(x)=|lgx|, 若0<a<b,且f(a)>f(b).证明: ab<1. 查看更多

 

题目列表(包括答案和解析)

设函数f(x)=sin2x+
3
sinxcosx
,x∈R
(1)求函数f(x)的最小正周期,并求f(x)在区间[-
π
4
π
6
]
上的最小值;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,A为锐角,若f(A)+f(-A)=
3
2
,b+c=7,△ABC的面积为2
3
,求a.

查看答案和解析>>

已知向量
m
=(sinx,
3
sinx)
n
=(sinx,-cosx)
,设函数f(x)=
m
n
,若函数g(x)的图象与f(x)的图象关于坐标原点对称.
(Ⅰ)求函数g(x)在区间[-
π
4
π
6
]上的最大值,并求出此时x的值;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,A为锐角,若f(A)-g(A)=
3
2
,b+c=7,△ABC的面积为2
3
,求边a的长.

查看答案和解析>>

(2012•青岛二模)已知向量
m
=(sinx,
3
sinx),
n
=(sinx,-cosx)
,设函数f(x)=
m
n

(Ⅰ)求函数f(x)在[0,
2
]
上的单调递增区间;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,A为锐角,若f(A)+sin(2A-
π
6
)=1
,b+c=7,△ABC的面积为2
3
,求边a的长.

查看答案和解析>>

设函数f(x)=x2+(lga+2)x+lgb,g(x)=2x+2,若f(-1)=0,且对一切实数x,不等式f(x)≥g(x)恒成立;

   (Ⅰ)(本问5分)求实数a、b的值;

   (Ⅱ)(本问7分)设F(x)=f(x)-g(x),数列{an}满足关系an=F(n),

         证明:

查看答案和解析>>

本题(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.
(1)选修4-2:矩阵与变换
已知矩阵A=
33
cd
,若矩阵A属于特征值6的一个特征向量为
α
=
1
1
,属于特征值1的一个特征向量为
β
=
&-2

(Ⅰ)求矩阵A;
(Ⅱ)判断矩阵A是否可逆,若可逆求出其逆矩阵A-1
(2)选修4-4:坐标系与参数方程
已知直线的极坐标方程为ρsin(θ+
π
4
)=
2
2
,圆M的参数方程为
x=2cosθ
y=-2+2sinθ
(其中θ为参数).
(Ⅰ)将直线的极坐标方程化为直角坐标方程;
(Ⅱ)求圆M上的点到直线的距离的最小值.
(3)选修4-5:不等式选讲,设函数f(x)=|x-1|+|x-a|;
(Ⅰ)若a=-1,解不等式f(x)≥3;
(Ⅱ)如果关于x的不等式f(x)≤2有解,求a的取值范围.

查看答案和解析>>


同步练习册答案