[例2] 已知函数y= (a2x)·loga2()(2≤x≤4)的最大值为0.最小值为-.求a的值. 解:y= (a2x)·loga2() =-loga(a2x)[-loga(ax)] =(2+logax)(1+logax) =(logax+)2-, ∵2≤x≤4且-≤y≤0,∴logax+=0,即x=时.ymin=-. ∵x≥2>1,∴>10<a<1. 又∵y的最大值为0时.logax+2=0或logax+1=0, 即x=或x=.∴=4或=2. 又∵0<a<1,∴a=. 评注:(1)若不注意发现隐含条件"0<a<1"则会造成不必要的分类讨论. (2)在最值问题中以二次函数为内容的最值最常见.而且许多表面上非二次函数最值问题通过适当变形都可以转化为二次函数最值. 查看更多

 

题目列表(包括答案和解析)

【例】

已知函数y=sin2x+cos2x-2.

(1)用“五点法”作出函数在一个周期内的图象;

(2)求这个函数的周期和单调区间;

(3)求函数图象的对称轴方程.

(4)说明图象是由y=sinx的图象经过怎样的变换得到的.

学科网

查看答案和解析>>

例4、已知函数y=f(x)是定义在R上的周期函数,周期T=5,函数y=f(x)(-1≤x≤1)是奇函数.又知y=f(x)在[0,1]上是一次函数,在[1,4]上是二次函数,且在x=2时函数取得最小值-5.
①证明:f(1)+f(4)=0;②求y=f(x),x∈[1,4]的解析式;③求y=f(x)在[4,9]上的解析式.

查看答案和解析>>

例4、已知函数y=f(x)是定义在R上的周期函数,周期T=5,函数y=f(x)(-1≤x≤1)是奇函数.又知y=f(x)在[0,1]上是一次函数,在[1,4]上是二次函数,且在x=2时函数取得最小值-5.
①证明:f(1)+f(4)=0;②求y=f(x),x∈[1,4]的解析式;③求y=f(x)在[4,9]上的解析式.

查看答案和解析>>

例4、已知函数y=f(x)是定义在R上的周期函数,周期T=5,函数y=f(x)(-1≤x≤1)是奇函数.又知y=f(x)在[0,1]上是一次函数,在[1,4]上是二次函数,且在x=2时函数取得最小值-5.
①证明:f(1)+f(4)=0;②求y=f(x),x∈[1,4]的解析式;③求y=f(x)在[4,9]上的解析式.

查看答案和解析>>

已知函数f(x)(x∈R)满足:对于任意实数x,y,都有f(x+y)=f(x)+f(y)+
1
2
恒成立,且当x>0时,f(x)>-
1
2
恒成立;
(1)求f(0)的值,并例举满足题设条件的一个特殊的具体函数;
(2)判定函数f(x)在R上的单调性,并加以证明;
(3)若函数F(x)=f(max{-x,2x-x2})+f(-k)+1(其中max{a,b}=
a,(a≥b)
b,(a<b)
)有三个零点x1,x2,x3,求u=(x1+x2+x3)+x1•x2•x3的取值范围.

查看答案和解析>>


同步练习册答案