21.y轴上两定点.x轴上两动点.为B1M与B2N的交点.点M.N的横坐标分别为XM.XN.且始终满足XMXN=且为常数).试求动点的轨迹方程. 查看更多

 

题目列表(包括答案和解析)

已知点P为圆x2+y2=4上的动点,且P不在x轴上,PD⊥x轴,垂足为D,线段PD中点Q的轨迹为曲线C,过定点M(t,0)(0<t<2)任作一条与y轴不垂直的直线l,它与曲线C交于A、B两点。
(1)求曲线C的方程;
(2)试证明:在x轴上存在定点N,使得∠ANB总能被x轴平分。

查看答案和解析>>

已知点P为圆 x2+y2=4上的动点,且P不在x 轴上,PD⊥x 轴,垂足为D,线段PD中点Q的轨迹为曲线C,过定点M(t,0)(0< t <2)任作一条与y轴不垂直的直线l ,它与曲线C交于A、B两点。
(1)求曲线C的方程;
(2)试证明:在x轴上存在定点N,使得∠ANB总能被x轴平分

查看答案和解析>>

如图,过圆x2+y2=4与x轴的两个交点A,B,作圆的切线AC,BD,再过圆上任意一点H作圆的切线,交AC,BD于C,D两点,设AD,BC的交点为R,
(Ⅰ)求动点R的轨迹E的方程;
(Ⅱ)过曲线E的右焦点作直线l交曲线E于M,N两点,交y轴于P点,且记,求证:λ12为定值。

查看答案和解析>>

在平面直角坐标系xOy中,点P(x,y)为动点,已知点A(,0),B(,0),直线PA与PB的斜率之积为定值
(Ⅰ)求动点P的轨迹E的方程;
(Ⅱ)若F(1,0),过点F的直线l交轨迹E于M,N两点,以MN为对角线的正方形的第三个顶点恰在y轴上,求直线l的方程。

查看答案和解析>>

长为3的线段AB的两个端点A,B分别在x,y轴上移动,点P在直线AB上且满足
(Ⅰ)求点P的轨迹的方程;
(Ⅱ)记点P轨迹为曲线C,过点Q(2,1)任作直线l交曲线C于M,N两点,过M作斜率为的直线l′交曲线C于另一点R。求证:直线NR与直线OQ的交点为定点(O为坐标原点),并求出该定点。

查看答案和解析>>


同步练习册答案