9.已知函数在处分别取得最大值与最小值.又数列 为等差数列.则的值为 ▲ 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=2lnx,g(x)=
1
2
ax2+3x.
(1)设直线x=1与曲线y=f(x)和y=g(x)分别相交于点P、Q,且曲线y=f(x)和y=g(x)在点P、Q处的切线平行,若方程
1
2
f(x2+1)+g(x)=3x+k有四个不同的实根,求实数k的取值范围;
(2)设函数F(x)满足F(x)+x[f′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分别是函数f(x)与g(x)的导函数;试问是否存在实数a,使得当x∈(0,1]时,F(x)取得最大值,若存在,求出a的取值范围;若不存在,说明理由.

查看答案和解析>>

已知函数f(x)=x3+ax2+bx+c在x=1与x=2处分别取得最大值与最小值,又数列{
f′(n)
pn+q
}
为等差数列,则
p
q
的值为
 

查看答案和解析>>

已知函数f(x)=2lnx,g(x)=数学公式ax2+3x.
(1)设直线x=1与曲线y=f(x)和y=g(x)分别相交于点P、Q,且曲线y=f(x)和y=g(x)在点P、Q处的切线平行,若方程数学公式f(x2+1)+g(x)=3x+k有四个不同的实根,求实数k的取值范围;
(2)设函数F(x)满足F(x)+x[f′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分别是函数f(x)与g(x)的导函数;试问是否存在实数a,使得当x∈(0,1]时,F(x)取得最大值,若存在,求出a的取值范围;若不存在,说明理由.

查看答案和解析>>

已知函数f(x)=x3+ax2+bx+c在x=1与x=2处分别取得最大值与最小值,又数列{
f′(n)
pn+q
}
为等差数列,则
p
q
的值为______.

查看答案和解析>>

已知函数f(x)=x4+bx3+cx2+dx+e(x∈R)分别在x=0处和x=1处取得极值.

(1)求d的值及b与c的关系式(用c表示b),并指出c的取值范围;

(2)若函数f(x)在x=0处取得极大值,

①判断c的取值范围;

②若此时函数f(x)在x=1时取得最小值,求c的取值范围.

查看答案和解析>>


同步练习册答案