题目列表(包括答案和解析)
(本小题满分分)
(普通高中)已知椭圆(a>b>0)的离心率,焦距是函数的零点.
(1)求椭圆的方程;
(2)若直线与椭圆交于、两点,,求k的值.
(本小题满分12分)
如图,已知椭圆C1的中心在圆点O,长轴左、右端点M、N在x轴上,椭圆C1的短轴为MN,且C1,C2的离心率都为e,直线l⊥MN,l与C1交于两点,与C1交于两点,这四点按纵坐标从大到小依次为A、B、C、D.
(I)设e=,求|BC|与|AD|的比值;
(II)当e变化时,是否存在直线l,使得BO//AN,并说明理由.
(本小题满分12分)已知A,B两点是椭圆 与坐标轴正半轴的两个交点.
(1)设为参数,求椭圆的参数方程;
(2)在第一象限的椭圆弧上求一点P,使四边形OAPB的面积最大,并求此最大值.
(本小题满分12分)
已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为和,且||=2,
点(1,)在该椭圆上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过的直线与椭圆C相交于A,B两点,若AB的面积为,求以为圆心且与直线相切是圆的方程.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com