题目列表(包括答案和解析)
设函数f(x)=ax+bx+1(a,b为实数),F(x)=
(1)若f(-1)=0且对任意实数x均有f(x)成立,求F(x)表达式。
(2)在(1)的条件下,当x时,g(x)=f(x)-kx是单调函数,求实数k的取值范围。
(3)(理)设m>0,n<0且m+n>0,a>0且f(x)为偶函数,求证:F(m)+F(n)>0。
(08年上虞市质量调测二理) 已知函数=x-klnx,x>0,常数k>0.
(Ⅰ)试确定函数的单调区间;
(Ⅱ)若对于任意x≥1,f(x)>0恒成立,试确定实数的取值范围;
(Ⅲ)设函数F(x)=,求证:F(1)F(2)……F(2n)>2n(n+1)n(n∈N*).
设函数的定义域为(0,+∞),且对任意正实数x,y都有f(x·y)=f(x)+f(y)恒成立,已知f(2)=1且x>1时f(x)>0.
(1)求;
(2)判断y=f(x)在(0,+ ∞)上的单调性;
(3)一个各项均为正数的数列其中sn是数列的前n项和,求
(本小题满分14分)
已知函数f(x)=-kx,.
(1)若k=e,试确定函数f(x)的单调区间;
(2)若k>0,且对于任意确定实数k的取值范围;[来源:学&科&网]
(3)设函数F(x)=f(x)+f(-x),求证:F(1)F(2)…F(n)>()。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com