题目列表(包括答案和解析)
(本小题16分)已知点A(-1, 0)、B(1, 0),△ABC的周长为2+2.记动点C的轨迹
为曲线W.
(1)直接写出W的方程(不写过程);
(2)经过点(0, )且斜率为k的直线l与曲线W 有两个不同的交点P和Q,是否存在常数k,使得向量与向量共线?如果存在,求出k的值;如果不存在,请说明理由.
(3)设W的左右焦点分别为F1、 F2,点R在直线l:x-y+8=0上.当∠F1RF2取最大值时,求的值.
(本小题满分16分)
在平面直角坐标系中,如图,已知椭圆的左、右顶点为A、B,右焦点为F。设过点T()的直线TA、TB与椭圆分别交于点M、,其中m>0,。
(1)设动点P满足,求点P的轨迹;
(2)设,求点T的坐标;
(3)设,求证:直线MN必过x轴上的一定点(其坐标与m无关)。
(本小题满分16分)已知函数(a>0,且a≠1),其中为常数.如果 是增函数,且存在零点(为的导函数).
(Ⅰ)求a的值;(Ⅱ)设A(x1,y1)、B(x2,y2)(x1<x2)是函数y=g(x)的图象上两点,( 为的导函数),证明:.
(本小题满分12分)
已知定点A(,0),B是圆C:(x-)2+y2=16,(C为圆心)上的动点,AB的垂直平分线与BC交与点E.
(1)求动点E的轨迹方程.
(2)设直线l:y=kx+m (k≠0,m>0)与E的轨迹交与P,Q两点,且以PQ为对角线的菱形的一顶点为M(-1,0),求△OPQ面积的最大值及此时直线l的方程.
(本小题满分16分)
已知数列满足=0,=2,
且对任意m,n∈都有+=+
(1)求,;
(2)设=-( n∈),证明:是等差数列;
(3)设=(-)( q≠0,n∈),求数列的前n项的和.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com