题目列表(包括答案和解析)
3.在质量为M的小车中挂着一个单摆,摆球的质量为m0,小车(和单摆)以恒定的速度u沿光滑的水平面运动,与位于正对面的质量为m的静止木块发生碰撞,碰撞时间极短,在此碰撞过程中,下列哪些说法是可能发生的
A.小车、木块、摆球的速度都发生变化,分别变为v1、v2、v3,满足:(M+m0)u=Mv1+mv2+mov3
B.摆球的速度不变,小车和木块的速度变为v1和v2,满足:Mu=Mv1+mv2
C.摆球的速度不变,小车和木块的速度都变为v,满足:Mu=(M+m)v
D.小车和摆球的速度都变为v1,木块的速度为v2,满足:(M+m0)u=(M+m0)v1+mv2
2.如图5-7所示将一光滑的半圆槽置于光滑水平面上,槽的左侧有一固定在水平面上的物块。今让一小球自左侧槽口A的正上方从静止开始落下,与圆弧槽相切自A点进入槽内,则以下结论中正确的是
A.小球在半圆槽内运动的全过程中,只有重力对它做功
B.小球在半圆槽内运动的全过程中,小球与半圆槽在水平方向动量守恒
C.小球自半圆槽的最低点B向C点运动的过程中,小球与半圆槽在水平方向动量守恒
D.小球离开C点以后,将做竖直上抛运动。
1. 一粒钢珠从静止状态开始自由下落,然后陷人泥潭中。若把在空中下落的过程称为过程Ⅰ,进人泥潭直到停止的过程称为过程Ⅱ, 则
A、过程I中钢珠的动量的改变量等于重力的冲量
B、过程Ⅱ中阻力的冲量的大小等于过程I中重力的冲量的大小
C、I、Ⅱ两个过程中合外力的总冲量等于零
D、过程Ⅱ中钢珠的动量的改变量等于零
15.[解析]
m与M之间速度不同,必然存在相对运动,在相互的摩擦力作用下m减速而M加速,当两者速度相同时无相对运动达共速,所以m的最终速度即为两者的共同速度。对m、M整体分析知,系统所受合外力为零,动量守恒,既然两者出现共速,动能必然要减少,从能量守恒的角度看,减少的动能转化为内能产生焦耳热。产生的热就其原因看是由于两者的相互摩擦,所以可以利用摩擦力产生热的特点即得解。
(1)对m、M组成系统受力分析知,其合外力为零,由动量守恒得
1
∴ 2
(2)对系统由能量守恒得产生焦耳热
3
∴ 由2、3解得 4
(3)由滑动摩擦力生热特点得
5
∴ 解得 6
14.[解析]
整个过程中,先是变加速运动,接着匀减速,最后匀速运动,作出v-t图线如图(1)所示。由于第一段内作非匀变速直线运动,用常规方法很难求得这1800m位移内的运动时间。考虑动量定理,将第一段的v-t图按比例转化成f-t图,如图(2)所示,则可以巧妙地求得这段时间。
设变加速下落时间为t1,
又:mg=kvm,得 所以:
第二段1s内:
所以第三段时间
空中的总时间:
13.[解析]
解法l 取物体为研究对象,它的运动可明显分为三个过程。设第一、二两过程末的速度分别为v1和v2。,物体所受摩擦力为f,规定推力的方向为正方向。根据动量定理对三个过程分别有:
联立上述三式得
解法2 规定推力的方向为正方向,在物体运动的整个过程中,物体的初动量p1=0,末动量p2=0。据动量定理有
即:
解得
12.[解析]
(1)由机械能守恒定律可得:mgR=+得 β=3
(2)设A、B碰撞后的速度分别为v1、v2,则 = =
设向右为正、向左为负,解得 v1=,方向向左 v2=,方向向右
设轨道对B球的支持力为N,B球对轨道的压力为N /,方向竖直向上为正、向下为负。则
N-βmg=βm N /=-N=-4.5mg,方向竖直向下
(3)设A、B球第二次碰撞刚结束时的速度分别为V1、V2,则
解得:V1=-,V2=0(另一组:V1=-v1,V2=-v2,不合题意,舍去)
由此可得:当n为奇数时,小球A、B在第n次碰撞刚结束时的速度分别与第一次碰撞刚结束时相同;当n为偶数时,小球A、B在第n次碰撞刚结束时的速度分别与第二次碰撞刚结束时相同
11.[解析]
取水平向左为正方向,冰车、人、球为系统.由动量守恒定律,
对第一次推球过程有:
对第二次整个接、推球过程有:
对第三次整个接、推球过程有:
对第n次整个接、推球过程同理分析得:
设推球n次后恰接不到球,则,故有 代人已知条件
解得:n = 8.5, 即人推球9次后将接不到球.
10.[解析]
(1)设所有物块都相对木板静止时的速度为 v,因木板与所有物块系统水平方向不受外力,动量守恒,应有:
m v+m·2 v+m·3 v+…+m·n v=(M + nm)v 1
M = nm, 2
解得: v=(n+1)v,
(2)设第1号物块相对木板静止时的速度为v,取木板与物块1为系统一部分,第2 号物块到第n号物块为系统另一部分,则
木板和物块1 △p =(M + m)v-m v,
2至n号物块 △p=(n-1)m·(v- v)
由动量守恒定律: △p=△p,
解得 v= v, 3
(3)设第k号物块相对木板静止时的速度由v ,则第k号物块速度由k v减为v的过程中,序数在第k号物块后面的所有物块动量都减小m(k v- v),取木板与序号为1至K号以前的各物块为一部分,则
△p=(M+km)v-(m v+m·2 v+…+mk v)=(n+k)m v-(k+1)m v
序号在第k以后的所有物块动量减少的总量为
△p=(n-k)m(k v- v)
由动量守恒得 △p=△p, 即
(n+k)m v-(k+1)m v= (n-k)m(k v- v),
解得 v=
9.[解析]
设人走到船尾时,人的速度为,船的速度为
对系统分析:动量守恒
对船分析:(匀加速运动) S =
对人分析:(匀加速运动)
得:S = 3.25 m.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com