题目列表(包括答案和解析)

 0  136648  136656  136662  136666  136672  136674  136678  136684  136686  136692  136698  136702  136704  136708  136714  136716  136722  136726  136728  136732  136734  136738  136740  136742  136743  136744  136746  136747  136748  136750  136752  136756  136758  136762  136764  136768  136774  136776  136782  136786  136788  136792  136798  136804  136806  136812  136816  136818  136824  136828  136834  136842  447348 

2、气体

试题详情

1、分子热运动  能量守恒

试题详情

3.圆盘离开桌布后在桌面上做匀减速直线运动的过程。

设圆盘离开桌布后在桌面上作匀减速运动,以a2表示加速度的大小,运动x2后便停下,由牛顿第二定律:

μ2mg=ma2       ⑥

由运动学知识:

v12=2a2 x2        ⑦

盘没有从桌面上掉下的条件是:

x2≤L-x1      ⑧

由以上各式解得:

   ⑨

[总结]此解题方法是运用了最基本的牛顿第二定律和运动学知识来解决这一复杂物理过程的,其实题目再复杂,也是用最基本的基础知识来求解的。当然,也可以从动能定理、动量定理、功能关系或v-t图象等角度求解。

(3)突破难点3

第3个难点也应属于思维上有难度的知识点。对于匀速运动的传送带传送初速为零的物体,传送带应提供两方面的能量,一是物体动能的增加,二是物体与传送带间的摩擦所生成的热(即内能),有不少同学容易漏掉内能的转化,因为该知识点具有隐蔽性,往往是漏掉了,也不能在计算过程中很容易地显示出来,尤其是在综合性题目中更容易疏忽。突破方法是引导学生分析有滑动摩擦力做功转化为内能的物理过程,使“只要有滑动摩擦力做功的过程,必有内能转化”的知识点在学生头脑中形成深刻印象。

一个物体以一定初速度滑上一粗糙平面,会慢慢停下来,物体的动能通过物体克服滑动摩擦力做功转化成了内能,当然这个物理过程就是要考查这一个知识点,学生是绝对不会犯错误的。

质量为M的长直平板,停在光滑的水平面上,一质量为m的物体,以初速度v0滑上长板,已知它与板间的动摩擦因数为μ,此后物体将受到滑动摩擦阻力作用而做匀减速运动,长板将受到滑动摩擦动力作用而做匀加速运动,最终二者将达到共同速度。其运动位移的关系如图2-9所示。

该过程中,物体所受的滑动摩擦阻力和长板受到滑动摩擦动力是一对作用力和反作用力,

W物=-μmg·x物

W板=μmg·x板

很显然x物>x板,滑动摩擦力对物体做的负功多,对长板做的正功少,那么物体动能减少量一定大于长板动能的增加量,二者之差为ΔE=μmg(x物-x板)=μmg·Δx,这就是物体在克服滑动摩擦力做功过程中,转化为内能的部分,也就是说“物体在克服滑动摩擦力做功过程中转化成的内能等于滑动摩擦力与相对滑动路程的乘积。”记住这个结论,一旦遇到有滑动摩擦力存在的能量转化过程就立即想到它。

再来看一下这个最基本的传送带问题:

物体轻轻放在传送带上,由于物体的初速度为0,传送带以恒定的速度运动,两者之间有相对滑动,出现滑动摩擦力。作用于物体的摩擦力使物体加速,直到它的速度增大到等于传送带的速度,作用于传送带的摩擦力有使传送带减速的趋势,但由于电动机的作用,保持了传送带的速度不变。尽管作用于物体跟作用于传送带的摩擦力的大小是相等的,但物体与传送带运动的位移是不同的,因为两者之间有滑动。如果物体的速度增大到等于传送带的速度经历的时间为t,则在这段时间内物体运动的位移小于传送带运动的位移。在这段时间内,传送带克服摩擦力做的功大于摩擦力对物体做的功(这功转变为物体的动能),两者之差即为摩擦发的热。所谓传送带克服摩擦力做功,归根到底是电动机在维持传送带速度不变的过程中所提供的。

例8:如图2-11所示,水平传送带以速度匀速运动,一质量为的小木块由静止轻放到传送带上,若小木块与传送带之间的动摩擦因数为μ,当小木块与传送带相对静止时,转化为内能的能量是多少?

          [审题]该题首先得清楚当小木块与传送带相对静止时,转化为内能的能量应该怎么来求,要想到用“物体在克服滑动摩擦力做功过程中转化成的内能等于滑动摩擦力与相对滑动路程的乘积。”这一结论,然后再根据物体和传送带的运动情况来求二者相对滑动的距离。

[解析]

在木块从开始加速至与传送带达到共同速度的过程中

       

       

      由公式

      可得:

     从木块静止至木块与传送带达到相对静止的过程中木块加速运动的时间

 

   传送带运动的位移

 

     木块相对传送带滑动的位移

        

     摩擦产生的热:

[总结]单独做该题目时,就应该有这样的解题步骤,不过,求相对位移时也可以物体为参考系,用传送带相对物体的运动来求。在综合性题目中用到该过程时,则直接用结论即可。该结论是:从静止放到匀速运动的传送带上的物体,在达到与传送带同速的过程中,转化为内能的能量值和物体增加的动能值相等。因为物体在该过程中的对地位移与传送带相对物体的位移大小是相等的。

例9:如图2-13所示,倾角为37º的传送带以4m/s的速度沿图示方向匀速运动。已知传送带的上、下两端间的距离为L=7m。现将一质量m=0.4kg的小木块放到传送带的顶端,使它从静止开始沿传送带下滑,已知木块与传送带间的动摩擦因数为μ=0.25,取g=10m/s2。求木块滑到底的过程中,摩擦力对木块做的功以及生的热各是多少?

[审题]该题目要分成两段考虑,第一段:木块的速度v<v0。这一阶段木块相对于传送带向后运动,受到的摩擦力方向向前,合外力沿斜面向前;第二段:木块的速度v>v0。这一阶段木块相对于传送带向前运动,受到的摩擦力方向向后,合外力仍沿斜面向前。

[解析]刚开始时,合力的大小为

    F合1=mgsin37º+μmgcos37º,

由牛顿第二定律,加速度大小

a1==8m/s2,

该过程所用时间

         t1==0.5s,

位移大小 

s1==1m。

二者速度大小相同后,合力的大小为

F合2=mgsin37º-μmgcos37º,

加速度大小

a2==4m/s2,

位移大小 

s2= L-s1= 6m,

所用时间 

s2= v0t2+

得: t2=1s。

(另一个解t2=-3s舍去)

摩擦力所做的功 

W=μmgcos37º·(s1-s2) =-4.0J,

      全过程中生的热  

Q=f·s相对

         =μmgcos37º·[(v0t1-s1)+(s2-v0t2)]

         =0.8N×3m=2.4J。

[总结]该题目的关键在于分析清楚物理过程,分成两段处理,正确分析物体受力情况,求出物体和传送带的位移,以及物体和传送带间的相对位移。

例10:一传送带装置示意如图2-14,其中传送带经过AB区域时是水平的,经过BC区域时变为圆弧形(圆弧由光滑模板形成,未画出),经过CD区域时是倾斜的,AB和CD都与BC相切。现将大量的质量均为m的小货箱一个一个在A处放到传送带上,放置时初速为零,经传送带运送到D处,D和A的高度差为h。稳定工作时传送带速度不变,CD段上各箱等距排列,相邻两箱的距离为L。每个箱子在A处投放后,在到达B之前已经相对于传送带静止,且以后也不再滑动(忽略经BC段时的微小滑动)。已知在一段相当长的时间T内,共运送小货箱的数目为N。这装置由电动机带动,传送带与轮子间无相对滑动,不计轮轴处的摩擦。求电动机的平均输出功率

[审题]小货箱放在传送带的AB段上时,由于货箱的初速度为0,传送带以恒定的速度运动,两者之间有相对滑动,出现滑动摩擦力。作用于货箱的摩擦力使货箱加速,直到它的速度增大到等于传送带的速度,作用于传送带的摩擦力有使传送带减速的趋势,但由于电动机的作用,保持了传送带的速度不变。尽管作用于货箱跟作用于传送带的摩擦力的大小是相等的,但小货箱与传送带运动的路程是不同的,因为两者之间有滑动。如果货箱的速度增大到等于传送带的速度经历的时间为t,则在这段时间内货箱运动的路程和传送带运动的路程分别是解答中的①式和③式,两者大小不同,由解答中的④式给出。在这段时间内,传送带克服摩擦力做的功大于摩擦力对货箱做的功(这功转变为货箱的动能),两者之差即为摩擦发的热。所谓传送带克服摩擦力做功,归根到底是电动机在维持传送带速度不变的过程中所提供的。这也就是在传送带的水平段上使一只小货箱从静止到跟随传送带一起以同样速度运动的过程中,电动机所做的功,这功一部分转变为货箱的动能,一部分因摩擦而发热。当货箱的速度与传送带速度相等后,只要货箱仍在传送带的水平段上,电动机无需再做功。为了把货箱从C点送到D点,电动机又要做功,用于增加货箱的重力势能mgh。由此便可得到输送N只货箱的过程中电动机输出的总功。

以上分析都是在假定已知传送带速度的条件下进行的,实际上传送带的速度是未知的。因此要设法找出。题中给出在时间T内运送的小货箱有N只,这是说,我们在D处计数,当第1只货箱到达D处时作为时刻t=0,当第N只货箱到达D处时恰好t=T。如果把这N只货箱以L的距离间隔地排在CD上(如果排得下的话),则第N只货箱到D处的距离为(N-1)L,当该货箱到达D处,即传送带上与该货箱接触的那点在时间T内运动到D点,故有。由此便可求出,电动机的平均功率便可求得。由于N很大,N与N-1实际上可视作相等的。

 [解析]以地面为参考系(下同),设传送带的运动速度为,在水平段的运输过程中,小货箱先在滑动摩擦力作用下做匀加速运动,直到其速度与传送带的速度相等。设这段路程为s,所用的时间为t,加速度为a,则对小货箱有

      ①

  ②

在这段时间内传送带运动的路程为

由上可得

   ④

用Ff表示小货箱与传送带之间的滑动摩擦力,则传送带对小货箱做功为

   ⑤

传送带克服小货箱对它的摩擦力做功

    ⑥

两者之差就克服摩擦力做功发出的热量

    ⑦

可见,在小货箱加速过程中,小货箱获得的动能与发热量相等。

T时间内电动机输出的功为

  ⑧

此功用于增加N个小货箱的动能、势能和使小货箱加速时程中克服摩擦力发 的热,即有  

     ⑨

N个小货箱之间的距离为(N-1)L,它应等于传送带在T时间内运动的距离,即有

   ⑩

因T很大,故N亦很大。

联立⑦、⑧、⑨、⑩,得

 

[总结]本题初看起来比较复杂,关于装置的描述也比较冗长.看来对于实际的问题或比较实际的问题,冗长的描述是常有的。要通过对描述的研究,抓住关键,把问题理想化、简单化,这本身就是一种分析问题、处理问题的能力。通过分析,可以发现题中传送带的水平段的作用是使货箱加速,直到货箱与传送带有相同的速度。使货箱加速的作用力来自货箱与传送带之间的滑动摩擦力。了解到这一点还不够,考生还必须知道在使货箱加速的过程中,货箱与传送带之间是有相对滑动的,尽管传送带作用于货箱的摩擦力跟货箱作用于传送带的摩擦力是一对作用力与反作用力,它们大小相等,方向相反,但在拖动货箱的过程中,货箱与传送带移动的路程是不同的。因此作用于货箱的摩擦力做的功与传送带克服摩擦力做的功是不同的。如果不明白这些道理,就不会分别去找货箱跟传送带运动的路程。虽然头脑中存有匀变速直线运动的公式,但不一定会把它们取出来加以使用。而在这个过程中,不管货箱获得的动能还是摩擦变的热,这些能量最终都来自电动机做的功。

传送带的倾斜段的作用是把货箱提升h高度。在这个过程中,传送带有静摩擦力作用于货箱,同时货箱还受重力作用,这两个力对货箱都做功,但货箱的动能并没有变化。因为摩擦力对货箱做的功正好等于货箱克服重力做的功,后者增大了货箱在重力场中的势能。同时在这个过程中传送带克服静摩擦力亦做功,这个功与摩擦力对货箱做的功相等,因为两者间无相对滑动。所以货箱增加的重力势能亦来自电动机。

有的同学见到此题后,不知从何下手,找不到解题思路和解题方法,其原因可能是对涉及的物理过程以及过程中遇到的一些基本概念不清楚造成的。求解物理题,不能依赖于套用解题方法,不同习题的解题方法都产生于对物理过程的分析和对基本概念的正确理解和应用。

试题详情

2.桌布从突然以恒定加速度a开始抽动至圆盘刚离开桌布这段时间内做匀加速运动的过程。

设桌布从盘下抽出所经历时间为t,在这段时间内桌布移动的距离为x1,

由运动学知识:

x =at2       ③

x1=a1t2       ④

而x=L+x1           ⑤

试题详情

(1)突破难点1

在以上三个难点中,第1个难点应属于易错点,突破方法是先让学生正确理解摩擦力产生的条件、方向的判断方法、大小的决定因素等等。通过对不同类型题目的分析练习,让学生做到准确灵活地分析摩擦力的有无、大小和方向。

摩擦力的产生条件是:第一,物体间相互接触、挤压; 第二,接触面不光滑; 第三,物体间有相对运动趋势或相对运动。

前两个产生条件对于学生来说没有困难,第三个条件就比较容易出问题了。若物体是轻轻地放在了匀速运动的传送带上,那么物体一定要和传送带之间产生相对滑动,物体和传送带一定同时受到方向相反的滑动摩擦力。关于物体所受滑动摩擦力的方向判断有两种方法:一是根据滑动摩擦力一定要阻碍物体间的相对运动或相对运动趋势,先判断物体相对传送带的运动方向,可用假设法,若无摩擦,物体将停在原处,则显然物体相对传送带有向后运动的趋势,因此物体要受到沿传送带前进方向的摩擦力,由牛顿第三定律,传送带要受到向后的阻碍它运动的滑动摩擦力;二是根据摩擦力产生的作用效果来分析它的方向,物体只所以能由静止开始向前运动,则一定受到向前的动力作用,这个水平方向上的力只能由传送带提供,因此物体一定受沿传送带前进方向的摩擦力,传送带必须要由电动机带动才能持续而稳定地工作,电动机给传送带提供动力作用,那么物体给传送带的就是阻力作用,与传送带的运动方向相反。

若物体是静置在传送带上,与传送带一起由静止开始加速,若物体与传送带之间的动摩擦因数较大,加速度相对较小,物体和传送带保持相对静止,它们之间存在着静摩擦力,物体的加速就是静摩擦力作用的结果,因此物体一定受沿传送带前进方向的摩擦力;若物体与传送带之间的动摩擦因数较小,加速度相对较大,物体和传送带不能保持相对静止,物体将跟不上传送带的运动,但它相对地面仍然是向前加速运动的,它们之间存在着滑动摩擦力,同样物体的加速就是该摩擦力的结果,因此物体一定受沿传送带前进方向的摩擦力。

   若物体与传送带保持相对静止一起匀速运动,则它们之间无摩擦力,否则物体不可能匀速运动。

若物体以大于传送带的速度沿传送带运动方向滑上传送带,则物体将受到传送带提供的使它减速的摩擦力作用,直到减速到和传送带有相同的速度、相对传送带静止为止。因此该摩擦力方向一定与物体运动方向相反。

若物体与传送带保持相对静止一起匀速运动一段时间后,开始减速,因物体速度越来越小,故受到传送带提供的使它减速的摩擦力作用,方向与物体的运动方向相反,传送带则受到与传送带运动方向相同的摩擦力作用。

   若传送带是倾斜方向的,情况就更为复杂了,因为在运动方向上,物体要受重力沿斜面的下滑分力作用,该力和物体运动的初速度共同决定相对运动或相对运动趋势方向。

例1:如图2-1所示,传送带与地面成夹角θ=37°,以10m/s的速度逆时针转动,在传送带上端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.5,已知传送带从A→B的长度L=16m,则物体从A到B需要的时间为多少?

[审题]传送带沿逆时针转动,与物体接触处的速度方向斜向下,物体初速度为零,所以物体相对传送带向上滑动(相对地面是斜向下运动的),因此受到沿斜面向下的滑动摩擦力作用,这样物体在沿斜面方向上所受的合力为重力的下滑分力和向下的滑动摩擦力,因此物体要做匀加速运动。当物体加速到与传送带有相同速度时,摩擦力情况要发生变化,同速的瞬间可以看成二者间相对静止,无滑动摩擦力,但物体此时还受到重力的下滑分力作用,因此相对于传送带有向下的运动趋势,若重力的下滑分力大于物体和传送带之间的最大静摩擦力,此时有μ<tanθ,则物体将向下加速,所受摩擦力为沿斜面向上的滑动摩擦力;若重力的下滑分力小于或等于物体和传送带之间的最大静摩擦力,此时有μ≥tanθ,则物体将和传送带相对静止一起向下匀速运动,所受静摩擦力沿斜面向上,大小等于重力的下滑分力。也可能出现的情况是传送带比较短,物体还没有加速到与传送带同速就已经滑到了底端,这样物体全过程都是受沿斜面向上的滑动摩擦力作用。

[解析]物体放上传送带以后,开始一段时间,其运动加速度

这样的加速度只能维持到物体的速度达到10m/s为止,其对应的时间和位移分别为:

<16m 

以后物体受到的摩擦力变为沿传送带向上,其加速度大小为(因为mgsinθ>μmgcosθ)。

设物体完成剩余的位移所用的时间为

11m=

解得:

所以:

 [总结]该题目的关键就是要分析好各阶段物体所受摩擦力的大小和方向,若μ>0.75,

第二阶段物体将和传送带相对静止一起向下匀速运动;若L<5m,物体将一直加速运动。因此,在解答此类题目的过程中,对这些可能出现两种结果的特殊过程都要进行判断。

例2:如图2-2所示,传送带与地面成夹角θ=30°,以10m/s的速度逆时针转动,在传送带上端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.6,已知传送带从A→B的长度L=16m,则物体从A到B需要的时间为多少?

[审题]该题目的物理过程的前半段与例题1是一样的,但是到了物体和传送带有相同速度时,情况就不同了,经计算,若物体和传送带之间的最大静摩擦力大于重力的下滑分力,物体将和传送带相对静止一起向下匀速运动,所受静摩擦力沿斜面向上,大小等于重力的下滑分力。

[解析]物体放上传送带以后,开始一段时间,其运动加速度

这样的加速度只能维持到物体的速度达到10m/s为止,其对应的时间和位移分别为:

<16m 

以后物体受到的摩擦力变为沿传送带向上,其加速度大小为零(因为mgsinθ<μmgcosθ)。

设物体完成剩余的位移所用的时间为

16m-5.91m=

解得:

所以:

 [总结]该题目的关键就是要分析好各阶段物体所受摩擦力的大小和方向,μ>tanθ=,第二阶段物体将和传送带相对静止一起向下匀速运动。

例3:如图2-3所示,传送带与地面成夹角θ=37°,以10m/s的速度逆时针转动,在传送带上端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.5,已知传送带从A→B的长度L=5m,则物体从A到B需要的时间为多少?

[审题]该题目的物理过程的前半段与例题1是一样的,

由于传送带比较短,物体将一直加速运动。

[解析]物体放上传送带以后,开始一段时间,其运动加速度

这样的加速度只能维持到物体的速度达到10m/s为止,其对应的时间和位移分别为:

 

此时物休刚好滑到传送带的低端。

所以:

 [总结]该题目的关键就是要分析好第一阶段的运动位移,看是否还要分析第二阶段。

例题4:如图2-4所示,传送带与地面成夹角θ=37°,以10m/s的速度顺时针转动,在传送带下端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.9,已知传送带从A→B的长度L=50m,则物体从A到B需要的时间为多少?

[审题]传送带沿顺时针转动,与物体接触处的速度方向斜向上,物体初速度为零,所以物体相对传送带向下滑动(相对地面是斜向上运动的),因此受到沿斜面向上的滑动摩擦力作用,这样物体在沿斜面方向上所受的合力为重力的下滑分力和向上的滑动摩擦力,因此物体要向上做匀加速运动。当物体加速到与传送带有相同速度时,摩擦力情况要发生变化,此时有μ≥tanθ,则物体将和传送带相对静止一起向上匀速运动,所受静摩擦力沿斜面向上,大小等于重力的下滑分力。

[解析]物体放上传送带以后,开始一段时间,其运动加速度

这样的加速度只能维持到物体的速度达到10m/s为止,其对应的时间和位移分别为:

<50m 

以后物体受到的摩擦力变为沿传送带向上,其加速度大小为零(因为mgsinθ<μmgcosθ)。

设物体完成剩余的位移所用的时间为

50m-41.67m=

解得:

所以:

 [总结]该题目的关键就是要分析好各阶段物体所受摩擦力的大小和方向,并对物体加速到与传送带有相同速度时,是否已经到达传送带顶端进行判断。

本题的一种错解就是:

         所以:=9.13s

该时间小于正确结果16.66s,是因为物体加速到10m/s时,以后的运动是匀速运动,而错误结果是让物体一直加速运动,经过相同的位移,所用时间就应该短。

(2)突破难点2

第2个难点是对于物体相对地面、相对传送带分别做什么样的运动,判断错误。该难点应属于思维上有难度的知识点,突破方法是灵活运用“力是改变物体运动状态的原因”这个理论依据,对物体的运动性质做出正确分析,判断好物体和传送带的加速度、速度关系,画好草图分析,找准物体和传送带的位移及两者之间的关系。

学生初次遇到“皮带传送”类型的题目,由于皮带运动,物体也滑动,就有点理不清头绪了。

解决这类题目的方法如下:选取研究对象,对所选研究对象进行隔离处理,就是一个化难为简的好办法。对轻轻放到运动的传送带上的物体,由于相对传送带向后滑动,受到沿传送带运动方向的滑动摩擦力作用,决定了物体将在传送带所给的滑动摩擦力作用下,做匀加速运动,直到物体达到与皮带相同的速度,不再受摩擦力,而随传送带一起做匀速直线运动。传送带一直做匀速直线运动,要想再把两者结合起来看,则需画一运动过程的位移关系图就可让学生轻松把握。

如图2-5甲所示,A、B分别是传送带上和物体上的一点,刚放上物体时,两点重合。设皮带的速度为V0,物体做初速为零的匀加速直线运动,末速为V0,其平均速度为V0/2,所以物体的对地位移x物= 传送带对地位移x传送带=V0t,所以A、B两点分别运动到如图2-5乙所示的A'、B'位置,物体相对传送带的位移也就显而易见了,x物=,就是图乙中的A'、B'间的距离,即传送带比物体多运动的距离,也就是物体在传送带上所留下的划痕的长度。

例题5:在民航和火车站可以看到用于对行李进行安全检查的水平传送带。当旅客把行李放到传送带上时,传送带对行李的滑动摩擦力使行李开始做匀加速运动。随后它们保持相对静止,行李随传送带一起前进。 设传送带匀速前进的速度为0.25m/s,把质量为5kg的木箱静止放到传送带上,由于滑动摩擦力的作用,木箱以6m/s2的加速度前进,那么这个木箱放在传送带上后,传送带上将留下一段多长的摩擦痕迹?

[审题]传送带上留下的摩擦痕迹,就是行李在传送带上滑动过程中留下的,行李做初速为零的匀加速直线运动,传送带一直匀速运动,因此行李刚开始时跟不上传送带的运动。当行李的速度增加到和传送带相同时,不再相对滑动,所以要求的摩擦痕迹的长度就是在行李加速到0.25m/s的过程中,传送带比行李多运动的距离。

[解析]

解法一:行李加速到0.25m/s所用的时间:

t==0.042s

行李的位移:

    x行李==0.0053m

传送带的位移:

x传送带=V0t=0.25×0.042m=0.0105m

摩擦痕迹的长度:

(求行李的位移时还可以用行李的平均速度乘以时间,行李做初速为零的匀加速直线运动,。)

解法二:以匀速前进的传送带作为参考系.设传送带水平向右运动。木箱刚放在传送带   

    上时,相对于传送带的速度v=0.25m/s,方向水平向左。木箱受到水平向右的摩 

    擦力F的作用,做减速运动,速度减为零时,与传送带保持相对静止。

木箱做减速运动的加速度的大小为

a=6m/s2

木箱做减速运动到速度为零所通过的路程为

即留下5mm长的摩擦痕迹。

[总结]分析清楚行李和传送带的运动情况,相对运动通过速度位移关系是解决该类问题的关键。

例题6:一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为。初始时,传送带与煤块都是静止的。现让传送带以恒定的加速度a0开始运动,当其速度达到v0后,便以此速度做匀速运动。经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动。求此黑色痕迹的长度。

 [审题]本题难度较大,传送带开始阶段也做匀加速运动了,后来又改为匀速,物体的运动情况则受传送带的运动情况制约,由题意可知,只有μg<a0才能相对传送带滑动,否则物体将与传送带一直相对静止。因此该题的重点应在对物体相对运动的情景分析、相对位移的求解上,需要较高的分析综合能力。

[解析]

方法一:

根据“传送带上有黑色痕迹”可知,煤块与传送带之间发生了相对滑动,煤块的加速度a小于传送带的加速度a0。根据牛顿运动定律,可得

设经历时间t,传送带由静止开始加速到速度等于v0,煤块则由静止加速到v,有

     

由于a<a0,故v<v0,煤块继续受到滑动摩擦力的作用。再经过时间t',煤块的速度由v增加到v0,有

此后,煤块与传送带运动速度相同,相对于传送带不再滑动,不再产生新的痕迹。

设在煤块的速度从0增加到v0的整个过程中,传送带和煤块移动的距离分别为s0和s,有

 

 

传送带上留下的黑色痕迹的长度

由以上各式得  

[小结]本方法的思路是整体分析两物体的运动情况,分别对两个物体的全过程求位移。

方法二:

第一阶段:传送带由静止开始加速到速度v0,设经历时间为t,煤块加速到v,有

v                ①

v         ②

传送带和煤块的位移分别为s1和s2,

         ③

     ④

第二阶段:煤块继续加速到v0,设经历时间为,有

v         ⑤

传送带和煤块的位移分别为s3和s4 ,有

           ⑥

       ⑦

传送带上留下的黑色痕迹的长度

由以上各式得

[小结]本方法的思路是分两段分析两物体的运动情况,分别对两个物体的两个阶段求位移,最后再找相对位移关系。

方法三:

传送带加速到v0 ,有         ①

传送带相对煤块的速度       ②

传送带加速过程中,传送带相对煤块的位移[相对初速度为零,相对加速度是]

传送带匀速过程中,传送带相对煤块的位移[相对初速度为t,相对加速度是]

整个过程中传送带相对煤块的位移即痕迹长度

   ③

由以上各式得

[小结]本方法的思路是用相对速度和相对加速度求解。关键是先选定好过程,然后对过程进行分析,找准相对初末速度、相对加速度。

方法四:用图象法求解

画出传送带和煤块的V-t图象,如图2-6所示。

其中

黑色痕迹的长度即为阴影部分三角形的面积,有:

[小结]本方法的思路是运用在速度-时间图象中,图线与其所对应的时间轴所包围图形的面积可以用来表示该段时间内的位移这个知识点,来进行求解,本方法不是基本方法,不易想到,但若能将它理解透,做到融会贯通,在解决相应问题时,就可以多一种方法。

[总结]本题题目中明确写道:“经过一段时间,煤块在传送带上留下一段黑色痕迹后,煤块相对于传送带不再滑动。”这就说明第一阶段传送带的加速度大于煤块的加速度。当传送带速度达到时,煤块速度,此过程中传送带的位移大于煤块的位移。接下来煤块还要继续加速到,传送带则以做匀速运动。两阶段的物体位移之差即为痕迹长度。

有的学生对此过程理解不深,分析不透,如漏掉第二阶段只将第一阶段位移之差作为痕迹长度;将煤块两阶段的总位移作为痕迹长度;用第一阶段的相对位移与第二阶段的煤块位移之和作为痕迹长度;还有的学生分三种情况讨论;有的甚至认为煤块最终减速到零,这些都说明了学生对物体相对运动时的过程分析能力还有欠缺。

处理物体和传送带的运动学问题时,既要考虑每个物体的受力情况及运动情况,又要考虑到它们之间的联系与区别,只有这样,才能从整体上把握题意,选择规律时才能得心应手。

例7:一小圆盘静止在桌布上,位于一方桌的水平桌面的中央。桌布的一边与桌的AB边重合,如图2-7,已知盘与桌布间的动摩擦因数为μl,盘与桌面间的动摩擦因数为μ2。现突然以恒定加速度a将桌布抽离桌面,加速度方向是水平的且垂直于AB边。若圆盘最后未从桌面掉下,则加速度a满足的条件是什么?(以g表示重力加速度)

[审题]这是一道特别复杂的综合题,不仅物理过程多,而且干扰因素也多。乍看不是传送带的题目,但处理方法与例题6几乎完全相同。可以将题中复杂的物理过程拆散分解为如下3个小过程,就可以化繁为简、化难为易,轻易破解本题。

过程1:圆盘从静止开始在桌布上做匀加速运动至刚离开桌布的过程;

过程2:桌布从突然以恒定加速度a开始抽动至圆盘刚离开桌布这段时间内做匀加速运动的过程;

过程3:圆盘离开桌布后在桌面上做匀减速直线运动的过程。

设桌面长为L,开始时,桌布、圆盘在桌面上的位置如图2-8甲所示;

圆盘位于桌面的中央,桌布的最左边位于桌面的左边处。由于桌布要从圆盘下抽出,桌布与圆盘之间必有相对滑动,圆盘在摩擦力作用下有加速度,其加速度a1应小于桌布的加速度a,但两者的方向是相同的。当桌布与圆盘刚分离时,圆盘与桌布的位置如图2-8乙所示。

圆盘向右加速运动的距离为x1,桌布向右加速运动的距离为L+x1。圆盘离开桌布后,在桌面上作加速度为a2的减速运动直到停下,因盘未从桌面掉下,故而盘作减速运动直到停下所运动的距离为x2,不能超过L-x1。通过分析并画出图2-8丙。

本题虽然是一个大多数同学都熟悉、并不难想象或理解的现象,但第一次能做对的同学并不多,其中的原因之一就是不善于在分析物理过程的同时正确地作出情境示意图,借助情境图来找出时间和空间上的量与量之间的关系。

[解析]

1.由牛顿第二定律:

μlmg=mal        ①

由运动学知识:

v12=2al x1        ②

试题详情

3、对于物体在传送带上运动过程中的能量转化情况考虑不全面,出现能量转化不守恒的错误过程。

试题详情

2、对于物体相对地面、相对传送带分别做什么样的运动,判断错误;

试题详情

1、对于物体与传送带之间是否存在摩擦力、是滑动摩擦力还是静摩擦力、摩擦力的方向如何,等等,这些关于摩擦力的产生条件、方向的判断等基础知识模糊不清;

试题详情

3.杂技节目“水流星”

表演时,用一根绳子两端各拴一个盛水的杯子,演员抡起杯子在竖直面内做圆周运动,在最高点杯口朝下,但水不会流下,如图所示,这是为什么?

分析:以杯中之水为研究对象进行受力分析,根据牛顿第二定律可知:F向=m,此时重力G与FN的合力充当了向心力即F向=G+FN

故:G+FN=m

由上式可知v减小,F减小,当FN=0时,v有最小值为

讨论:

①当mg=m,即v=时,水恰能过最高点不洒出,这就是水能过最高点的临界条件;

②当mg>m,即v<时,水不能过最高点而不洒出;

③当mg<m,即v>时,水能过最高点不洒出,这时水的重力和杯对水的压力提供向心力。

例8:绳系着装有水的水桶,在竖直面内做圆周运动,水的质量m=0.5 kg,绳长L=60 cm,求:

①最高点水不流出的最小速率。

②水在最高点速率v=3 m/s时,水对桶底的压力。

[审题]当v0=时,水恰好不流出,要求水对桶底的压力和判断是否能通过最高点,也要和这个速度v比较,v>v0时,有压力;v=v0时,恰好无压力;v≤v0时,不能到达最高点。

[解析]①水在最高点不流出的条件是重力不大于水做圆周运动所需要的向心力即mg<

则最小速度v0==2.42 m/s。

②当水在最高点的速率大于v0时,只靠重力提供向心力已不足,此时水桶底对水有一向下的压力,设为F,由牛顿第二定律

F+mg=m得:F=2.6 N。

由牛顿第三定律知,水对水桶的作用力F′=-F=-2.6 N,即方向竖直向上。

[总结]当速度大于临界速率时,重力已不足以提供向心力,所缺部分由桶底提供,因此桶底对水产生向下的压力。

例2:汽车质量m为1.5×104 kg,以不变的速率先后驶过凹形路面和凸形路面,路面圆弧半径均为15 m,如图3-17所示.如果路面承受的最大压力不得超过2×105 N,汽车允许的最大速率是多少?汽车以此速率驶过路面的最小压力是多少?

[审题]首先要确定汽车在何位置时对路面的压力最大,汽车经过凹形路面时,向心加速度方向向上,汽车处于超重状态;经过凸形路面时,向心加速度向下,汽车处于失重状态,所以汽车经过凹形路面最低点时,汽车对路面的压力最大。

[解析]当汽车经过凹形路面最低点时,设路面支持力为FN1,受力情况如图3-18所示,由牛顿第二定律,

有FN1-mg=m

要求FN1≤2×105 N

解得允许的最大速率vm=7.07 m/s

由上面分析知,汽车经过凸形路面顶点时对路面压力最小,设为FN2,如图3-19所示,由牛顿第二定律有

mg-FN2=

解得FN2=1×105 N。

[总结]汽车过拱桥时,一定要按照实际情况受力分析,沿加速度方向列式。

(7)离心运动

离心现象条件分析

①做圆周运动的物体,由于本身具有惯性,总是想沿着切线方向运动,只是由于向心力作用,使它不能沿切线方向飞出,而被限制着沿圆周运动,如图3-20中B所示。

②当产生向心力的合外力消失,F=0,物体便沿所在位置的切线方向飞出去,如图3-20中A所示。

③当提供向心力的合外力不完全消失,而只是小于应当具有的向心力,,即合外力不足以提供所需的向心力的情况下,物体沿切线与圆周之间的一条曲线运动,如图3-20所示。 

图3-20
 

在实际中,有一些利用离心运动的机械,这些机械叫做离心机械。离心机械的种类很多,应用也很广。例如,离心干燥(脱水)器,离心分离器,离心水泵。

例9:一把雨伞边缘的半径为r,且高出水平地面h.当雨伞以角速度ω旋转时,雨滴自边缘甩出落在地面上成一个大圆周.这个大圆的半径为_______。

[审题]想象着实际情况,当以一定速度旋转雨伞时,雨滴甩出做离心运动,落在地上,形成一个大圆。

[解析]雨滴离开雨伞的速度为v0=ωr

雨滴做平抛运动的时间为t=

雨滴的水平位移为s=v0t=ωr

雨滴落在地上形成的大圆的半径为

R=

[总结]通过题目的分析,雨滴从伞边缘沿切线方向,以一定的初速度飞出,竖直方向上是自由落体运动,雨滴做的是平抛运动,把示意图画出来,通过示意图就可以求出大圆半径。

(8)难点突破⑧--圆周运动的功和能

应用圆周运动的规律解决实际生活中的问题,由于较多知识交织在一起,所以分析问题时利用能量守恒定律和机械能守恒定律的特点作为解题的切入点,可能大大降低难度。

例9:使一小球沿半径为R的圆形轨道从最低点上升,那么需给它最小速度为多大时,才能使它达到轨道的最高点?

[审题]小球到达最高点A时的速度vA不能为零,否则小球早在到达A点之前就离开了圆形轨道。要使小球到达A点(自然不脱离圆形轨道),则小球在A点的速度必须满足

Mg+NA=m,式中,NA为圆形轨道对小球的弹力。上式表示小球在A点作圆周运动所需要的向心力由轨道对它的弹力和它本身的重力共同提供。当NA=0时,vA最小,vA=。这就是说,要使小球到达A点,则应该使小球在A点具有的速度vA≥

[解析]以小球为研究对象。小球在轨道最高点时,受重力和轨道给的弹力。

小球在圆形轨道最高点A时满足方程

根据机械能守恒,小球在圆形轨道最低点B时的速度满足方程

     (2)

解(1),(2)方程组得

当NA=0时,VB=为最小,VB=

所以在B点应使小球至少具有VB=的速度,才能使它到达圆形轨道的最高点A。

[总结]在杆和管子的约束下做圆周运动时,可以有拉力和支持力,所以在最高点的速度可以等于零;在圆轨道和绳子的约束下做圆周运动时,只能有拉力,所以在最高点的速度必须大于

(9)实验中常见的圆周运动

综合题往往以圆周运动和其他物理知识为背景,这类题代表了理科综合命题方向,要在平日的做题中理解题目的原理,灵活的把握题目。

例10: 图3-22甲所示为测量电动机转动角速度的实验装置,半径不大的圆形卡纸固定在电动机转轴上,在电动机的带动下匀速转动.在圆形卡纸的旁边垂直安装一个改装了的电火花计时器。

①请将下列实验步骤按先后排序:    .

A.使电火花计时器与圆形卡纸保持良好接触

B.接通电火花计时器的电源,使它工作起来

C.启动电动机,使圆形卡纸转动起来

D.关闭电动机,拆除电火花计时器;研究卡纸上留下的一段痕迹(如图3-22乙所示),写出角速度ω的表达式,代入数据,得出ω的测量值

②要得到ω的测量值,还缺少一种必要的测量工具,它是  .

A.秒表  B.毫米刻度尺  C.圆规  D.量角器

③写出角速度ω的表达式,并指出表达式中各个物理量的意义:     

                .

④为了避免在卡纸连续转动的过程中出现打点重叠,在电火花计时器与盘面保持良好接触的同时,可以缓慢地将电火花计时器沿圆形卡纸半径方向向卡纸中心移动.则卡纸上打下的点的分布曲线不是一个圆,而是类似一种螺旋线,如图3-22丙所示.这对测量结果有影响吗?   

[审题]因为这个题目用的是打点计时器,所以两点之间的时间是0.02s,通过量角器量出圆心到两点之间的角度,利用ω=θ/t。

[解析]具体的实验步骤应该是A、C、B、D,量出角度应该用量角器D,,θ为n个点对应的圆心角,t为时间间隔;应该注意的一个问题是不能转动一圈以上,因为点迹重合,当半径减小时,因为单位时间内转过的角度不变,所以没有影响。

[总结]本题考查的是圆周运动中角速度的定义,ω=θ/t,实验中θ是用量角器测量出来的,时间t的测量用的是打点计时器,应该充分发挥想象,不是打点计时器只能测量直线运动。

试题详情

(1)匀速圆周运动与非匀速圆周运动

a.圆周运动是变速运动,因为物体的运动方向(即速度方向)在不断变化。圆周运动也不可能是匀变速运动,因为即使是匀速圆周运动,其加速度方向也是时刻变化的。

b.最常见的圆周运动有:①天体(包括人造天体)在万有引力作用下的运动;②核外电子在库仑力作用下绕原子核的运动;③带电粒子在垂直匀强磁场的平面里在磁场力作用下的运动;④物体在各种外力(重力、弹力、摩擦力、电场力、磁场力等)作用下的圆周运动。

c.匀速圆周运动只是速度方向改变,而速度大小不变。做匀速圆周运动的物体,它所受的所有力的合力提供向心力,其方向一定指向圆心。非匀速圆周运动的物体所受的合外力沿着半径指向圆心的分力,提供向心力,产生向心加速度;合外力沿切线方向的分力,产生切向加速度,其效果是改变速度的大小。

例1:如图3-1所示,两根轻绳同系一个质量m=0.1kg的小球,两绳的另一端分别固定在轴上的A、B两处,上面绳AC长L=2m,当两绳都拉直时,与轴的夹角分别为30°和45°,求当小球随轴一起在水平面内做匀速圆周运动角速度为ω=4rad/s时,上下两轻绳拉力各为多少?

[审题]两绳张紧时,小球受的力由0逐渐增大时,ω可能出现两个临界值。

[解析]如图3-1所示,当BC刚好被拉直,但其拉力T2恰为零,设此时角速度为ω1,AC绳上拉力设为T1,对小球有:

  ①

代入数据得:

要使BC绳有拉力,应有ω>ω1,当AC绳恰被拉直,但其拉力T1恰为零,设此时角速度为ω2,BC绳拉力为T2,则有

  ③

  T2sin45°=mLACsin30°④

代入数据得:ω2=3.16rad/s。要使AC绳有拉力,必须ω<ω2,依题意ω=4rad/s>ω2,故AC绳已无拉力,AC绳是松驰状态,BC绳与杆的夹角θ>45°,对小球有:

T2cosθ=m ω2LBCsin θ ⑤

而LACsin30°=LBCsin45°

LBC=m   ⑥

由⑤、⑥可解得

[总结]当物体做匀速圆周运动时,所受合外力一定指向圆心,在圆周的切线方向上和垂直圆周平面的方向上的合外力必然为零。

(2)同轴装置与皮带传动装置

在考查皮带转动现象的问题中,要注意以下两点:

a、同一转动轴上的各点角速度相等;

b、和同一皮带接触的各点线速度大小相等,这两点往往是我们解决皮带传动的基本方法。

例2:如图3-2所示为一皮带传动装置,右轮的半径为r,a是它边缘上的一点,左侧是一轮轴,大轮半径为4r,小轮半径为2r,b点在小轮上,到小轮中心距离为r,c点和d点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则

A.a点与b点线速度大小相等

B.a点与c点角速度大小相等

C.a点与d点向心加速度大小相等

D.a、b、c、d四点,加速度最小的是b点

[审题] 分析本题的关键有两点:其一是同一轮轴上的各点角速度相同;其二是皮带不打滑时,与皮带接触的各点线速度大小相同。这两点抓住了,然后再根据描述圆周运动的各物理量之间的关系就不难得出正确的结论。

[解析]由图3-2可知,a点和c点是与皮带接触的两个点,所以在传动过程中二者的线速度大小相等,即va=vc,又v=ωR, 所以ωar=ωc·2r,即ωa=2ωc.而b、c、d三点在同一轮轴上,它们的角速度相等,则ωb=ωc=ωd=ωa,所以选项B错.又vb=ωb·r= ωar=,所以选项A也错.向心加速度:aa=ωa2r;ab=ωb2·r=()2r=ωa2r=aa;ac=ωc2·2r=(ωa)2·2r= ωa2r=aa;ad=ωd2·4r=(ωa)2·4r=ωa2r=aa.所以选项C、D均正确。

[总结]该题除了同轴角速度相等和同皮带线速度

大小相等的关系外,在皮带传动装置中,从动轮的

转动是静摩擦力作用的结果.从动轮受到的摩擦力

带动轮子转动,故轮子受到的摩擦力方向沿从动轮

的切线与轮的转动方向相同;主动轮靠摩擦力带动

皮带,故主动轮所受摩擦力方向沿轮的切线与轮的

转动方向相反。是不是所有  

的题目都要是例1这种类型的呢?当然不是,

当轮与轮之间不是依靠皮带相连转动,而是依靠摩擦力的作用或者是齿轮的啮合,如图3-3所示,同样符合例1的条件。

(3)向心力的来源

a.向心力是根据力的效果命名的.在分析做圆周运动的质点受力情况时,切记在物体的作用力(重力、弹力、摩擦力等)以外不要再添加一个向心力。

b.对于匀速圆周运动的问题,一般可按如下步骤进行分析:

①确定做匀速圆周运动的物体作为研究对象。

②明确运动情况,包括搞清运动速率v,轨迹半径R及轨迹圆心O的位置等。只有明确了上述几点后,才能知道运动物体在运动过程中所需的向心力大小( mv2/R )和向心力方向(指向圆心)。

③分析受力情况,对物体实际受力情况做出正确的分析,画出受力图,确定指向圆心的合外力F(即提供向心力)。

④选用公式F=m=mRω2=mR解得结果。

c.圆周运动中向心力的特点:

①匀速圆周运动:由于匀速圆周运动仅是速度方向变化而速度大小不变,故只存在向心加速度,物体受到外力的合力就是向心力。可见,合外力大小不变,方向始终与速度方向垂直且指向圆心,是物体做匀速圆周运动的条件。

②变速圆周运动:速度大小发生变化,向心加速度和向心力都会相应变化。求物体在某一点受到的向心力时,应使用该点的瞬时速度,在变速圆周运动中,合外力不仅大小随时间改变,其方向也不沿半径指向圆心。合外力沿半径方向的分力(或所有外力沿半径方向的分力的矢量和)提供向心力,使物体产生向心加速度,改变速度的方向;合外力沿轨道切线方向的分力,使物体产生切向加速度,改变速度的大小。

③当物体所受的合外力F小于所需要提供的向心力mv2/R时,物体做离心运动。

例3:如图3-4所示,半径为R的半球形碗内,有一个具有一定质量的物体A,A与碗壁间的动摩擦因数为μ,当碗绕竖直轴OO/匀速转动时,物体A刚好能紧贴在碗口附近随碗一起匀速转动而不发生相对滑动,求碗转动的角速度.

[审题]物体A随碗一起转动而不发生相对滑动,则物体做匀速圆周运动的角速度ω就等于碗转动的角速度ω。物体A做匀速圆周运动所需的向心力方向指向球心O,故此向心力不是由重力而是由碗壁对物体的弹力提供,此时物体所受的摩擦力与重力平衡。

[解析]物体A做匀速圆周运动,向心力:

而摩擦力与重力平衡,则有:

即:

由以上两式可得:

即碗匀速转动的角速度为:

[总结]分析受力时一定要明确向心力的来源,即搞清楚什么力充当向心力.本题还考查了摩擦力的有关知识:水平方向的弹力为提供摩擦力的正压力,若在刚好紧贴碗口的基础上,角速度再大,此后摩擦力为静摩擦力,摩擦力大小不变,正压力变大。

例4:如图3-5所示,在电机距轴O为r处固定一质量为m的铁块.电机启动后,铁块以角速度ω绕轴O匀速转动.则电机对地面的最大压力和最小压力之差为__________。

[审题]铁块在竖直面内做匀速圆周运动,其向心力是重力mg与轮对它的力F的合力.由圆周运动的规律可知:当m转到最低点时F最大,当m转到最高点时F最小。

[解析]设铁块在最高点和最低点时,电机对其作用力分别为F1和F2,且都指向轴心,根据牛顿第二定律有:

在最高点:mg+F1=mω2r                    ①

在最低点:F2-mg=mω2r                         ②

电机对地面的最大压力和最小压力分别出现在铁块m位于最低点和最高点时,且压力差的大小为:ΔFN=F2+F1                                                                 ③

由①②③式可解得:ΔFN=2mω2r

[总结]

(1)若m在最高点时突然与电机脱离,它将如何运动?

(2)当角速度ω为何值时,铁块在最高点与电机恰无作用力?

(3)本题也可认为是一电动打夯机的原理示意图。若电机的质量为M,则ω多大时,电机可以“跳”起来?此情况下,对地面的最大压力是多少?

解:(1)做初速度沿圆周切线方向,只受重力的平抛运动。

(2)电机对铁块无作用力时,重力提供铁块的向心力,则

mg=mω12r

即  ω1=

(3)铁块在最高点时,铁块与电动机的相互做用力大小为F1,则

F1+mg=mω22r

F1=Mg

即当ω2≥时,电动机可以跳起来,当ω2=时,铁块在最低点时电机对地面压力最大,则

F2-mg=mω22r

FN=F2+Mg

解得电机对地面的最大压力为FN=2(M+m)g

(4)圆周运动的周期性

利用圆周运动的周期性把另一种运动(例如匀速直线运动、平抛运动)联系起来。圆周运动是一个独立的运动,而另一个运动通常也是独立的,分别明确两个运动过程,注意用时间相等来联系。

在这类问题中,要注意寻找两种运动之间的联系,往往是通过时间相等来建立联系的。同时,要注意圆周运动具有周期性,因此往往有多个答案。

例5:如图3-6所示,半径为R的圆盘绕垂直于盘面的中心轴匀速转动,其正上方h处沿OB方向水平抛出一个小球,要使球与盘只碰一次,且落点为B,则小球的初速度v=_________,圆盘转动的角速度ω=_________。

[审题]小球做的是平抛运动,在小球做平抛运动的这段时间内,圆盘做了一定角度的圆周运动。

[解析]①小球做平抛运动,在竖直方向上:

h=gt2

则运动时间

t=

又因为水平位移为R

所以球的速度

v==R·

②在时间t内,盘转过的角度θ=n·2π,又因为θ=ωt

则转盘角速度:

ω==2nπ(n=1,2,3…)

[总结]上题中涉及圆周运动和平抛运动这两种不同的运动,这两种不同运动规律在解决同一问题时,常常用“时间”这一物理量把两种运动联系起来。

例6:如图3-7所示,小球Q在竖直平面内做匀速圆周运动,当Q球转到图示位置时,有另一小球P在距圆周最高点为h处开始自由下落.要使两球在圆周最高点相碰,则Q球的角速度ω应满足什么条件?

[审题]下落的小球P做的是自由落体运动,小球Q做的是圆周运动,若要想碰,必须满足时间相等这个条件。

[解析]设P球自由落体到圆周最高点的时间为t,由自由落体可得

gt2=h

求得t=

Q球由图示位置转至最高点的时间也是t,但做匀速圆周运动,周期为T,有

t=(4n+1)(n=0,1,2,3……)

两式联立再由T=得  (4n+1)=

所以ω=(4n+1)  (n=0,1,2,3……)

[总结]由于圆周运动每个周期会重复经过同一个位置,故具有重复性。在做这类题目时,应该考虑圆周运动的周期性。

(5)竖直平面内圆周运动的临界问题

圆周运动的临界问题:

 

(1)如上图3-8所示,没有物体支撑的小球,在绳和轨道的约束下,在竖直平面做圆周运动过最高点的情况:

①临界条件:绳子或轨道对小球没有力的做用:mg=mv临界=

②能过最高点的条件:v≥,当v>时,绳对球产生拉力,轨道对球产生压力。

③不能过最高点的条件:v<v临界(实际上球还没到最高点时就脱离了轨道)

(2)如图3-9球过最高点时,轻质杆对球产生的弹力情况:

①当v=0时,FN=mg(FN为支持力)。

②当0<v<时,FN随v增大而减小,且mg>FN>0,FN为支持力。

③当v=时,FN=0。

④当v>时,FN为拉力,FN随v的增大而增大。

如图所示3-10的小球在轨道的最高点时,如果v≥此时将脱离轨道做平抛运动,因为轨道对小球不能产生拉力。

例7:半径为R的光滑半圆球固定在水平面上,如图3-11所示。顶部有一小物体甲,今给它一个水平初速度,则物体甲将(  )

A.沿球面下滑至M点

B.先沿球面下滑至某点N,然后便离开球面作斜下抛运动

C.按半径大于R的新的圆弧轨道作圆周运动

D.立即离开半圆球作平抛运动

[审题]物体在初始位置受竖直向下的重力,因为v0=,所以,球面支持力为零,又因为物体在竖直方向向下运动,所以运动速率将逐渐增大,若假设物体能够沿球面或某一大于R的新的圆弧做圆周运动,则所需的向心力应不断增大。而重力沿半径方向的分力逐渐减少,对以上两种情况又不能提供其他相应的指向圆心的力的作用,故不能提供不断增大的向心力,所以不能维持圆周运动。

[解析]物体应该立即离开半圆球做平抛运动,故选D。

[总结]当物体到达最高点,速度等于时,半圆对物体的支持力等于零,所以接下来物体的运动不会沿着半圆面,而是做平抛运动。

(6)圆周运动的应用

a.定量分析火车转弯的最佳情况。

 ①受力分析:如图所示3-12火车受到的支持力和重力的合力水平指向圆心,成为使火车拐弯的向心力。

②动力学方程:根据牛顿第二定律得

 mgtanθ=m

 其中r是转弯处轨道的半径,是使内外轨均不受侧向力的最佳速度。

 ③分析结论:解上述方程可知

 =rgtanθ

 可见,最佳情况是由、r、θ共同决定的。

 当火车实际速度为v时,可有三种可能,

 当v=时,内外轨均不受侧向挤压的力;

 当v>时,外轨受到侧向挤压的力(这时向心力增大,外轨提供一部分力);

 当v<时,内轨受到侧向挤压的力(这时向心力减少,内轨抵消一部分力)。

还有一些实例和这一模型相同,如自行车转弯,高速公路上汽车转弯等等

我们讨论的火车转弯问题,实质是物体在水平面的匀速圆周运动,从力的角度看其特点是:合外力的方向一定在水平方向上,由于重力方向在竖直方向,因此物体除了重力外,至少再受到一个力,才有可能使物体产生在水平面做匀速圆周运动的向心力.

实际在修筑铁路时,要根据转弯处的半径r和规定的行驶速度v0,适当选择内外轨的高度差,使转弯时所需的向心力完全由重力G和支持力FN的合力来提供,如上图3-12所示.必须注意,虽然内外轨有一定的高度差,但火车仍在水平面内做圆周运动,因此向心力是沿水平方向的,而不是沿“斜面”向上,F=Gtgθ=mgtgθ,故mgtgθ=m

b.汽车过拱桥

汽车静止在桥顶与通过桥顶是否同种状态?不是的,汽车静止在桥顶、或通过桥顶,虽然都受到重力和支持力。但前者这两个力的合力为零,后者合力不为零。

汽车过拱桥桥顶的向心力如何产生?方向如何?汽车在桥顶受到重力和支持力,如图3-13所示,向心力由二者的合力提供,方向竖直向下。

  运动有什么特点?①动力学方程:

 由牛顿第二定律

 G-=m

解得=G-m-

 ②汽车处于失重状态

 汽车具有竖直向下的加速度,<mg,对桥的压力小于重力.这也是为什么桥一般做成拱形的原因.

 ③汽车在桥顶运动的最大速度为

根据动力学方程可知,当汽车行驶速度越大,汽车和桥面的压力越小,当汽车的速度为时,压力为零,这是汽车保持在桥顶运动的最大速度,超过这个速度,汽车将飞出桥顶,做平抛运动。

另:

c.人骑自行车转弯

由于速度较大,人、车要向圆心处倾斜,与竖直方向成φ角,如图3-14所示,人、车的重力mg与地面的作用力F的合力作为向心力.地面的作用力是地面对人、车的支持力FN与地面的摩擦力的合力,实际上仍是地面的摩擦力作为向心力。

由图知,F向=mgtanφ=m

2.圆锥摆

摆线张力与摆球重力的合力提供摆球做匀速圆周运动的向心力.如图3-15所示,质量为m的小球用长为L的细线连接着,使小球在水平面内做匀速圆周运动.细线与竖直方向夹角为α,试分析其角速度ω的大小。

对小球而言,只受两个力:重力mg和线的拉力T.这两个力的合力mgtanα提供向心力,半径r=Lsinα,所以由F=mrω2得,mgtanα=mLsinα·ω2

整理得ω=

可见,角速度越大,角α也越大。

试题详情


同步练习册答案