题目列表(包括答案和解析)

 0  136743  136751  136757  136761  136767  136769  136773  136779  136781  136787  136793  136797  136799  136803  136809  136811  136817  136821  136823  136827  136829  136833  136835  136837  136838  136839  136841  136842  136843  136845  136847  136851  136853  136857  136859  136863  136869  136871  136877  136881  136883  136887  136893  136899  136901  136907  136911  136913  136919  136923  136929  136937  447348 

2.小车AB静置于光滑的水平面上,A端固定一个轻质弹簧,B端粘有橡皮泥,AB车质量为M,长为L,质量为m的木块C放在小车上,用细绳连结于小车的A端并使弹簧压缩,开始时ABC都处于静止状态,如图所示,当突然烧断细绳,弹簧被释放,使物体C离开弹簧向B端冲去,并跟B端橡皮泥粘在一起,以下说法中正确的是   BCD 

A.如果AB车内表面光滑,整个系统任何时刻机械能都守恒]

B.整个系统任何时刻动量都守恒

C.当木块对地运动速度为v时,小车对地运动速度为v

D.AB车向左运动最大位移小于L[

试题详情

1.质量相同的两个小球在光滑水平面上沿连心线同向运动,球1的动量为   7 kg·m/s,球2的动量为5 kg·m/s,当球1追上球2时发生碰撞,则碰撞后两球动量变化的可能值是A       

A.Δp1=-1 kg·m/s,Δp2=1 kg·m/s

B.Δp1=-1 kg·m/s,Δp2=4 kg·m/s

C.Δp1=-9 kg·m/s,Δp2=9 kg·m/s

D.Δp1=-12 kg·m/s,Δp2=10 kg·m/s[

试题详情

3.如图所示,在沙堆表面放置一长方形木块A,其上面再放一个质量为m=0.10kg的爆竹B,木块的质量为M=6.0kg。当爆竹爆炸时,因反冲作用使木块陷入沙中深度h=50cm,而木块所受的平均阻力为f=80N。若爆竹的火药质量以及空气阻力可忽略不计,g取,求爆竹能上升的最大高度。

解:爆竹爆炸瞬间,木块获得的瞬时速度v可由牛顿第二定律和运动学公式求得

爆竹爆炸过程中,爆竹木块系统动量守恒  [来源:Zxx]

练习2

试题详情

2.如图所示,放在光滑水平桌面上的AB木块中部夹一被压缩的弹簧,当弹簧被放开时,它们各自在桌面上滑行一段距离后,飞离桌面落在地上。A的落地点与桌边水平距离0.5m,B的落地点距离桌边1m,那么(  A、B、D)

A.AB离开弹簧时的速度比为1∶2

B.AB质量比为2∶1

C.未离开弹簧时,AB所受冲量比为1∶2

D.未离开弹簧时,AB加速度之比1∶2

试题详情

练习1

1.质量为M的小车在水平地面上以速度v0匀速向右运动。当车中的砂子从底部的漏斗中不断流下时,车子速度将(  B  )

A.减小     B.不变    C.增大     D.无法确定

试题详情

6.物块与平板间的相对滑动

[例8]如图所示,一质量为M的平板车B放在光滑水平面上,在其右端放一质量为m的小木块AmM,A、B间动摩擦因数为μ,现给AB以大小相等、方向相反的初速度v0,使A开始向左运动,B开始向右运动,最后A不会滑离B,求:

(1)A、B最后的速度大小和方向;

(2)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动位移大小。

解析:(1)由A、B系统动量守恒定律得:

Mv0-mv0=(M+m)v   

所以v=v0   方向向右

(2)A向左运动速度减为零时,到达最远处,此时板车移动位移为s,速度为v′,则由动量守恒定律得:Mv0-mv0=Mv′      ①

对板车应用动能定理得:

-μmgs=mv2-mv02        ②[

联立①②解得:s=v02

[例9]两块厚度相同的木块AB,紧靠着放在光滑的水平面上,其质量分别为,它们的下底面光滑,上表面粗糙;另有一质量的滑块C(可视为质点),以的速度恰好水平地滑到A的上表面,如图所示,由于摩擦,滑块最后停在木块B上,BC的共同速度为3.0m/s,求:

(1)木块A的最终速度; (2)滑块C离开A时的速度

 解析:这是一个由ABC三个物体组成的系统,以这系统为研究对象,当CAB上滑动时,ABC三个物体间存在相互作用,但在水平方向不存在其他外力作用,因此系统的动量守恒。

(1)当C滑上A后,由于有摩擦力作用,将带动AB一起运动,直至C滑上B后,A、B两木块分离,分离时木块A的速度为。最后C相对静止在B上,与B以共同速度运动,由动量守恒定律有 

=

(2)为计算,我们以BC为系统,C滑上B后与A分离,CB系统水平方向动量守恒。C离开A时的速度为 BA的速度同为,由动量守恒定律有

试题详情

5.某一方向上的动量守恒

[例7] 如图所示,AB为一光滑水平横杆,杆上套一质量为M的小圆环,环上系一长为L质量不计的细绳,绳的另一端拴一质量为m的小球,现将绳拉直,且与AB平行,由静止释放小球,则当线绳与A Bθ角时,圆环移动的距离是多少?

解析:虽然小球、细绳及圆环在运动过程中合外力不为零(杆的支持力与两圆环及小球的重力之和不相等)系统动量不守恒,但是系统在水平方向不受外力,因而水平动量守恒。设细绳与ABθ角时小球的水平速度为v,圆环的水平速度为V,则由水平动量守恒有:MV=mv

且在任意时刻或位置Vv均满足这一关系,加之时间相同,公式中的Vv可分别用其水平位移替代,则上式可写为:

Md=m[(L-Lcosθ)-d

解得圆环移动的距离:   d=mL(1-cosθ)/(M+m)[

试题详情

4.爆炸类问题

[例6] 抛出的手雷在最高点时水平速度为10m/s,这时突然炸成两块,其中大块质量300g仍按原方向飞行,其速度测得为50m/s,另一小块质量为200g,求它的速度的大小和方向。

分析:手雷在空中爆炸时所受合外力应是它受到的重力G=( m1+m2 )g,可见系统的动量并不守恒。但在爆炸瞬间,内力远大于外力时,外力可以不计,系统动量近似守恒。

设手雷原飞行方向为正方向,则整体初速度m1=0.3kg的大块速度为m/s、m2=0.2kg的小块速度为,方向不清,暂设为正方向。

由动量守恒定律:

m/s

此结果表明,质量为200克的部分以50m/s的速度向反方向运动,其中负号表示与所设正方向相反

试题详情

3.反冲问题

在某些情况下,原来系统内物体具有相同的速度,发生相互作用后各部分的末速度不再相同而分开。这类问题相互作用过程中系统的动能增大,有其它能向动能转化。可以把这类问题统称为反冲。

[例4] 质量为m的人站在质量为M,长为L的静止小船的右端,小船的左端靠在岸边。当他向左走到船的左端时,船左端离岸多远?

解析:先画出示意图。人、船系统动量守恒,总动量始终为零,所以人、船动量大小始终相等。从图中可以看出,人、船的位移大小之和等于L。设人、船位移大小分别为l1l2,则:

mv1=Mv2,两边同乘时间tml1=Ml2,而l1+l2=L

点评:应该注意到:此结论与人在船上行走的速度大小无关。不论是匀速行走还是变速行走,甚至往返行走,只要人最终到达船的左端,那么结论都是相同的。

以上列举的人、船模型的前提是系统初动量为零。如果发生相互作用前系统就具有一定的动量,就不能再用m1v1=m2v2这种形式列方程,而要用(m1+m2)v0= m1v1+ m2v2列式。

[例5] 总质量为M的火箭模型 从飞机上释放时的速度为v0,速度方向水平。火箭向后以相对于地面的速率u喷出质量为m的燃气后,火箭本身的速度变为多大?

解析:火箭喷出燃气前后系统动量守恒。喷出燃气后火箭剩余质量变为M-m,以v0方向为正方向,

试题详情

2.子弹打木块类问题

子弹打木块实际上是一种完全非弹性碰撞。作为一个典型,它的特点是:子弹以水平速度射向原来静止的木块,并留在木块中跟木块共同运动。下面从动量、能量和牛顿运动定律等多个角度来分析这一过程。

[例3] 设质量为m的子弹以初速度v0射向静止在光滑水平面上的质量为M的木块,并留在木块中不再射出,子弹钻入木块深度为d。求木块对子弹的平均阻力的大小和该过程中木块前进的距离。

解析:子弹和木块最后共同运动,相当于完全非弹性碰撞。

从动量的角度看,子弹射入木块过程中系统动量守恒:

从能量的角度看,该过程系统损失的动能全部转化为系统的内能。设平均阻力大小为f,设子弹、木块的位移大小分别为s1s2,如图所示,显然有s1-s2=d

对子弹用动能定理:        ……①

对木块用动能定理:          ……②

①、②相减得: ……③

点评:这个式子的物理意义是:fžd恰好等于系统动能的损失;根据能量守恒定律,系统动能的损失应该等于系统内能的增加;可见,即两物体由于相对运动而摩擦产生的热(机械能转化为内能),等于摩擦力大小与两物体相对滑动的路程的乘积(由于摩擦力是耗散力,摩擦生热跟路径有关,所以这里应该用路程,而不是用位移)。

由上式不难求得平均阻力的大小:

至于木块前进的距离s2,可以由以上②、③相比得出:

从牛顿运动定律和运动学公式出发,也可以得出同样的结论。由于子弹和木块都在恒力作用下做匀变速运动,位移与平均速度成正比:

 

一般情况下,所以s2<<d。这说明,在子弹射入木块过程中,木块的位移很小,可以忽略不计。这就为分阶段处理问题提供了依据。象这种运动物体与静止物体相互作用,动量守恒,最后共同运动的类型,全过程动能的损失量可用公式:…④

当子弹速度很大时,可能射穿木块,这时末状态子弹和木块的速度大小不再相等,但穿透过程中系统动量仍然守恒,系统动能损失仍然是ΔEK= f žd(这里的d为木块的厚度),但由于末状态子弹和木块速度不相等,所以不能再用④式计算ΔEK的大小。

试题详情


同步练习册答案