题目列表(包括答案和解析)

 0  137317  137325  137331  137335  137341  137343  137347  137353  137355  137361  137367  137371  137373  137377  137383  137385  137391  137395  137397  137401  137403  137407  137409  137411  137412  137413  137415  137416  137417  137419  137421  137425  137427  137431  137433  137437  137443  137445  137451  137455  137457  137461  137467  137473  137475  137481  137485  137487  137493  137497  137503  137511  447348 

25.(山东卷)(18分)如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为d,两侧为相同的匀强磁场,方向垂直纸面向里。一质量为、带电量+q、重力不计的带电粒子,以初速度垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动。已知粒子第二次在磁场中运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推。求

⑴粒子第一次经过电场子的过程中电场力所做的功

⑵粒子第n次经过电场时电场强度的大小

⑶粒子第n次经过电场子所用的时间

⑷假设粒子在磁场中运动时,电场区域场强为零。请画出从粒子第一次射入磁场至第三次离开电场的过程中,电场强度随时间变化的关系图线(不要求写出推导过程,不要求标明坐标明坐标刻度值)。

解析:

(1)根据,因为,所以,所以,

(2)=,所以

(3),所以

(4)

试题详情

36.(广东卷)(18分)如图16(a)所示,左为某同学设想的粒子速度选择装置,由水平转轴及两个薄盘N1、N2构成,两盘面平行且与转轴垂直,相距为L,盘上各开一狭缝,两狭缝夹角可调(如图16(b));右为水平放置的长为d的感光板,板的正上方有一匀强磁场,方向垂直纸面向外,磁感应强度为B.一小束速度不同、带正电的粒子沿水平方向射入N1,能通过N2的粒子经O点垂直进入磁场。 O到感光板的距离为,粒子电荷量为q,质量为m,不计重力。

(1)若两狭缝平行且盘静止(如图16(c)),某一粒子进入磁场后,竖直向下打在感光板中心点M上,求该粒子在磁场中运动的时间t;

(2)若两狭缝夹角为 ,盘匀速转动,转动方向如图16(b).要使穿过N1、N2的粒子均打到感光板P1P2连线上。试分析盘转动角速度的取值范围(设通过N1的所有粒子在盘转一圈的时间内都能到达N2)。

解:

(1)分析该粒子轨迹圆心为P1,半径为,在磁场中转过的圆心角为,因而运动时间为:

(2)设粒子从N1运动到N2过程历时为t,之后在磁场中运行速度大小为v,轨迹半径为R则:

在粒子匀速过程有:

L=vt        ①    

粒子出来进入磁场的条件:

      ②

在磁场中做匀速圆周运动有:

    ③

设粒子刚好过P1点、P2点时轨迹半径分别为:R1、R2则:

      ④

        ⑤

  ⑥

由①-⑥得:

试题详情

21、(福建卷)(19分)如图所示,两条平行的光滑金属导轨固定在倾角为的绝缘斜面上,导轨上端连接一个定值电阻。导体棒a和b放在导轨上,与导轨垂直并良好接触。斜面上水平虚线PQ以下区域内,存在着垂直穿过斜面向上的匀强磁场。现对a棒施以平行导轨斜向上的拉力,使它沿导轨匀速向上运动,此时放在导轨下端的b棒恰好静止。当a棒运动到磁场的上边界PQ处时,撤去拉力,a棒将继续沿导轨向上运动一小段距离后再向下滑动,此时b棒已滑离导轨。当a棒再次滑回到磁场边界PQ处时,又恰能沿导轨匀速向下运动。已知a棒、b棒和定值电阻的阻值均为R,b棒的质量为m,重力加速度为g,导轨电阻不计。求

(1)a棒在磁场中沿导轨向上运动的过程中,a棒中的电流强度I,与定值电阻R中的电流强度IR之比;

(2)a棒质量ma

(3)a棒在磁场中沿导轨向上运动时所受的拉力F。

解析:

(1)a棒沿导轨向上运动时,a棒、b棒及电阻R中的电流分别为Ia、Ib、IR,有

解得:

(2)由于a棒在PQ上方滑动过程中机械能守恒,因而a棒在磁场中向上滑动的速度大小v1与在磁场中向下滑动的速度大小v2相等,即v1=v2=v

设磁场的磁感应强度为B,导体棒长为L乙,a棒在磁场中运动时产生的感应电动势为

E=Blv

当a棒沿斜面向上运动时

向下匀速运动时,a棒中的电流为Ia’、则

  

由以上各式联立解得:

(3)由题可知导体棒a沿斜面向上运动时,所受拉力

试题详情

9.(江苏卷)如图所示,在匀强磁场中附加另一匀强磁场,附加磁场位于图中阴影区域,附加磁场区域的对称轴OO’与SS’垂直。a、b、c三个质子先后从S点沿垂直于磁场的方向摄入磁场,它们的速度大小相等,b的速度方向与SS’垂直,a、c的速度方向与b的速度方向间的夹角分别为,且。三个质子经过附加磁场区域后能达到同一点S’,则下列说法中正确的有

A.三个质子从S运动到S’的时间相等

B.三个质子在附加磁场以外区域运动时,运动轨迹的圆心均在OO’轴上

C.若撤去附加磁场,a到达SS’连线上的位置距S点最近

D.附加磁场方向与原磁场方向相同

答案:CD

解析:

A.三个质子从S运动到S’的时间不相等,A错误;

B.三个质子在附加磁场意外区域运动时,只有b运动轨迹的圆心在OO’轴上,因为半径相等,而圆心在初速度方向的垂线上,所以B错误;

C.用作图法可知,若撤去附加电场,a到达SS’连线上的位置距S点最近,b最远;C正确;

D.因b要增大曲率,才能使到达SS’连线上的位置向S点靠近,所以附加磁场方向与原磁场方向相同,D正确;

本体选CD。

本体考查带电粒子在磁场中的运动。

难度:难。

试题详情

21.(重庆卷)如题21图所示,矩形MNPQ区域内有方向垂直于纸面的匀强磁场,有5个带电粒子从图中箭头所示位置垂直于磁场边界进入磁块,在纸面民内做匀速圆周运动,运动轨迹为相应的圆弧,这些粒子的质量,电荷量以及速度大小如下表所示

由以上信息可知,从图中a、b、c处进大的粒子对应表中的编号分别为

A 3、5、4        B4、 2、5

C5、3、2        D2、4、5  

答案:D

[解析]根据半径公式结合表格中数据可求得1-5各组粒子的半径之比依次为0.5︰2︰3︰3︰2,说明第一组正粒子的半径最小,该粒子从MQ边界进入磁场逆时针运动。由图a、b粒子进入磁场也是逆时针运动,则都为正电荷,而且a、b粒子的半径比为2︰3,则a一定是第2组粒子,b是第4组粒子。c顺时针运动,都为负电荷,半径与a相等是第5组粒子。正确答案D。

试题详情

13.(上海物理) 如图,长为的直导线拆成边长相等,夹角为形,并置于与其所在平面相垂直的匀强磁场中,磁感应强度为,当在该导线中通以电流强度为的电流时,该形通电导线受到的安培力大小为

(A)0    (B)0.5    (C)    (D)

答案:C

解析:导线有效长度为2lsin30°=l,所以该V形通电导线收到的安培力大小为。选C。

本题考查安培力大小的计算。

难度:易。

试题详情

25.(新课标卷)(18分)如图所示,在0≤x≤a、o≤y≤范围内有垂直于xy平面向外的匀强磁场,磁感应强度大小为B。坐标原点O处有一个粒子源,在某时刻发射大量质量为m、电荷量为q的带正电粒子,它们的速度大小相同,速度方向均在xy平面内,与y轴正方向的夹角分布在0-90°范围内.己知粒子在磁场中做圆周运动的半径介于到a之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一,求最后离开磁场的粒子从粒子源射出时的:

(1)速度大小;

(2)速度方向与y轴正方向夹角正弦。

  

解析:

设粒子的发射速度为v,粒子做圆周运动的轨道半径为R,由牛顿第二定律和洛伦磁力公式,得,解得:

<R<a时,在磁场中运动时间最长的粒子,其轨迹是圆心为C的圆弧,圆弧与磁场的边界相切,如图所示,设该粒子在磁场中运动的时间为t,依题意,时,

设最后离开磁场的粒子的发射方向与y轴正方向的夹角为α,由几何关系可得:

再加上,解得:

(海南卷)15.右图中左边有一对平行金属板,两板相距为d.电压为V;两板之间有匀强磁场,磁感应强度大小为,方向与金属板面平行并垂直于纸面朝里。图中右边有一半径为R、圆心为O的圆形区域内也存在匀强磁场,磁感应强度大小为B,方向垂直于纸面朝里。一电荷量为q的正离子沿平行于全属板面、垂直于磁场的方向射入平行金属板之间,沿同一方向射出平行金属板之间的区域,并沿直径EF方向射入磁场区域,最后从圆形区城边界上的G点射出.已知弧所对应的圆心角为,不计重力.求

(1)离子速度的大小;

(2)离子的质量.

答案:(1)  (2)

解析:(1)由题设知,离子在平行金属板之间做匀速直线运动,安所受到的向上的压力和向下的电场力平衡

                ①

式中,是离子运动速度的大小,是平行金属板之间的匀强电场的强度,有

                  ②

由①②式得             ③

(2)在圆形磁场区域,离子做匀速圆周运动,由洛伦兹力公式和牛顿第二定律有

                ④

式中,分别是离子的质量和它做圆周运动的半径。由题设,离子从磁场边界上的点G穿出,离子运动的圆周的圆心必在过E点垂直于EF的直线上,且在EG的垂直一平分线上(见右图)。由几何关系有

                ⑤

式中,与直径EF的夹角,由几何关系得

                 ⑥

联立③④⑤⑥式得,离子的质量为     ⑦

试题详情

26.(全国卷1)(21分)如下图,在区域内存在与xy平面垂直的匀强磁场,磁感应强度的大小为B.在t=0时刻,一位于坐标原点的粒子源在xy平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y轴正方向的夹角分布在0-180°范围内。已知沿y轴正方向发射的粒子在时刻刚好从磁场边界上点离开磁场。求:

⑴    粒子在磁场中做圆周运动的半径R及粒子的比荷q/m;

⑵    此时刻仍在磁场中的粒子的初速度方向与y轴正方向夹角的取值范围;

⑶    从粒子发射到全部粒子离开磁场所用的时间。

[答案]⑴  

⑵速度与y轴的正方向的夹角范围是60°到120°

⑶从粒子发射到全部离开所用 时间 为

[解析] ⑴粒子沿y轴的正方向进入磁场,从P点经过做OP的垂直平分线与x轴的交点为圆心,根据直角三角形有

解得

,则粒子做圆周运动的的圆心角为120°,周期为

粒子做圆周运动的向心力由洛仑兹力提供,根据牛顿第二定律得

,化简得

⑵仍在磁场中的粒子其圆心角一定大于120°,这样粒子角度最小时从磁场右边界穿出;角度最大时从磁场左边界穿出。

角度最小时从磁场右边界穿出圆心角120°,所经过圆弧的弦与⑴中相等穿出点如图,根据弦与半径、x轴的夹角都是30°,所以此时速度与y轴的正方向的夹角是60°。

角度最大时从磁场左边界穿出,半径与y轴的的夹角是60°,则此时速度与y轴的正方向的夹角是120°。

所以速度与y轴的正方向的夹角范围是60°到120°

⑶在磁场中运动时间最长的粒子的轨迹应该与磁场的右边界相切,在三角形中两个相等的腰为,而它的高是

,半径与y轴的的夹角是30°,这种粒子的圆心角是240°。所用 时间 为

所以从粒子发射到全部离开所用 时间 为

(全国卷2)26(21分)图中左边有一对平行金属板,两板相距为d,电压为V;两板之间有匀强磁场,磁场应强度大小为B0,方向平行于板面并垂直于纸面朝里。图中右边有一边长为a的正三角形区域EFG(EF边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B,方向垂直于纸面朝里。假设一系列电荷量为q的正离子沿平行于金属板面,垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF边中点H射入磁场区域。不计重力

(1)已知这些离子中的离子甲到达磁场边界EG后,从边界EF穿出磁场,求离子甲的质量。

(2)已知这些离子中的离子乙从EG边上的I点(图中未画出)穿出磁场,且GI长为,求离子乙的质量。

(3)若这些离子中的最轻离子的质量等于离子甲质量的一半,而离子乙的质量是最大的,问磁场边界上什么区域内可能有离子到达。

解析:

(1)在粒子进入正交的电磁场做匀速直线运动,设粒子的速度为v,电场的场强为E0,根据平衡条件得

                ①

                  ②

由①②化简得

                 ③

   粒子甲垂直边界EF进入磁场,又垂直边界EF穿出磁场,则轨迹圆心在EF上。粒子运动中经过EG,说明圆轨迹与EG相切,在如图的三角形中半径为

R=acos30°tan15°             ④

tan15°=        ⑤

联立④⑤化简得

              ⑥

在磁场中粒子所需向心力由洛伦磁力提供,根据牛顿第二定律得

              ⑦

联立③⑦化简得

             ⑧

(2)由于1点将EG边按1比3等分,根据三角形的性质说明此轨迹的弦与EG垂直,在如图的三角形中,有

      ⑨

同理

             (10)

(3)最轻离子的质量是甲的一半,根据半径公式离子的轨迹半径与离子质量呈正比,所以质量在甲和最轻离子之间的所有离子都垂直边界EF穿出磁场,甲最远离H的距离为,最轻离子最近离H的距离为,所以在离H的距离为之间的EF边界上有离子穿出磁场。

比甲质量大的离子都从EG穿出磁场,期中甲运动中经过EG上的点最近,质量最大的乙穿出磁场的1位置是最远点,所以在EG上穿出磁场的粒子都在这两点之间。

试题详情

3.16107s,求太阳的质量M。

分析与解:根据地球绕太阳做圆周运动的向心力来源于万有引力得:

          G=mr(2π/T)2

        M=4π2r3/GT2=1.96 1030kg.

例17、宇航员在一星球表面上的某高处,沿水平方向抛出一小球。经过时间t,小球落到星球表面,测得抛出点与落地点之间的距离为L。若抛出时初速度增大到2倍,则抛出点与落地点之间的距离为L。已知两落地点在同一水平面上,该星球的半径为R,万有引力常数为G。求该星球的质量M。

分析与解:设抛出点的高度为h,第一次平抛的水平射程为x,则有

       x2+h2=L2    

由平抛运动规律得知,当初速度增大到2倍时,其水平射程也增大到2x,可得  

 (2x)2+h2=(L)2       

设该星球上的重力加速度为g,由平抛运动的规律得:

    h=gt2             

由万有引力定律与牛顿第二定律得:

  mg= G             

联立以上各式解得M=

问题11:会用万有引力定律求卫星的高度。

通过观测卫星的周期T和行星表面的重力加速度g及行星的半径R可以求出卫星的高度。

例18、已知地球半径约为R=6.4106m,又知月球绕地球的运动可近似看作匀速圆周运动,则可估算出月球到地球的距离约    m.(结果只保留一位有效数字)。

分析与解:因为mg= G,而G=mr(2π/T)2

   所以,r= =4108m.

问题12:会用万有引力定律计算天体的平均密度。

通过观测天体表面运动卫星的周期T,就可以求出天体的密度ρ。

例19、如果某行星有一颗卫星沿非常靠近此恒星的表面做匀速圆周运动的周期为T,则可估算此恒星的密度为多少?

分析与解:设此恒星的半径为R,质量为M,由于卫星做匀速圆周运动,则有  G=mR,  所以,M=

而恒星的体积V=πR3,所以恒星的密度ρ==

例20、一均匀球体以角速度ω绕自己的对称轴自转,若维持球体不被瓦解的唯一作用力是万有引力,则此球的最小密度是多少?

分析与解:设球体质量为M,半径为R,设想有一质量为m的质点绕此球体表面附近做匀速圆周运动,则

G=mω02R,  所以,ω02=πGρ。

由于ω≤ω0得ω2πGρ,则ρ≥,即此球的最小密度为

问题13:会用万有引力定律推导恒量关系式。

例21、行星的平均密度是,靠近行星表面的卫星运转周期是T,试证明:T2是一个常量,即对任何行星都相同。

证明:因为行星的质量M=(R是行星的半径),行星的体积

V=R3,所以行星的平均密度==

T2=,是一个常量,对任何行星都相同。

例22、设卫星做圆周运动的轨道半径为r,运动周期为T,试证明:是一个常数,即对于同一天体的所有卫星来说,均相等。

证明:由G= mr(2π/T)2=,即对于同一天体的所有卫星来说,均相等。

问题14:会求解卫星运动与光学问题的综合题

例23、某颗地球同步卫星正下方的地球表面上有一观察者,他用天文望远镜观察被太阳光照射的此卫星,试问,春分那天(太阳光直射赤道)在日落12小时内有多长时间该观察者看不见此卫星?已知地球半径为R,地球表面处的重力加速度为g,地球自转周期为T,不考虑大气对光的折射。

分析与解:设所求的时间为t,用m、M分别表示卫星和地球的质量,r表示卫星到地心的距离.有

  

春分时,太阳光直射地球赤道,如图17所示,图中圆E表示赤道,S表示卫星,A表示观察者,O表示地心. 由图17可看出当卫星S绕地心O转到图示位置以后(设地球自转是沿图中逆时针方向),其正下方的观察者将看不见它. 据此再考虑到对称性,有

    

   

   

由以上各式可解得    

问题15:会用运动的合成与分解知识求解影子或光斑的速度问题。

例24、如图18所示,点光源S到平面镜M的距离为d。光屏AB与平面镜的初始位置平行。当平面镜M绕垂直于纸面过中心O的转轴以ω的角速度逆时针匀速转过300时,垂直射向平面镜的光线SO在光屏上的光斑P的即时速度大小为   

分析与解:当平面镜转过300时,反射光线转过600角,反射光线转动的角速度为平面镜转动角速度的2倍,即为2ω。将P点速度沿OP方向和垂直于OP的方向进行分解,可得:

Vcos600=2ω.op=4ωd,所以V=8ωd.

例25、如图19所示,S为频闪光源,每秒钟闪光30次,AB弧对O点的张角为600,平面镜以O点为轴顺时针匀速转动,角速度ω=rad/s,问在AB弧上光点个数最多不超过多少?

分析与解:根据平面镜成像特点及光的反射定律可知,当平面镜以ω转动时,反射光线转动的角速度为2ω。因此,光线扫过AB弧的时间为t=0.5S,则在AB弧上光点个数最多不会超过15个。

试题详情

13.如图29所示,长为L的细绳,一端系有一质量为m的小球,另一端固定在O点。细绳能够承受的最大拉力为7mg。现将小球拉至细绳呈水平位置,然后由静止释放,小球将在竖直平面内摆动。如果在竖直平面内直线OA(OA与竖直方向的夹角为θ)上某一点O钉一个小钉,为使小球可绕O点在竖直平面内做圆周运动,且细绳不致被拉断,求OO的长度d所允许的范围。

试题详情


同步练习册答案