题目列表(包括答案和解析)

 0  137491  137499  137505  137509  137515  137517  137521  137527  137529  137535  137541  137545  137547  137551  137557  137559  137565  137569  137571  137575  137577  137581  137583  137585  137586  137587  137589  137590  137591  137593  137595  137599  137601  137605  137607  137611  137617  137619  137625  137629  137631  137635  137641  137647  137649  137655  137659  137661  137667  137671  137677  137685  447348 

5.如图32所示,木块M上表面是水平的,当木块m置于M上,并与M一起沿光滑斜面由静止开始下滑,在下滑过程中

   A.重力对木块m做正功

   B.木块M对木块m的支持力做负功

   C.木块M对木块m的摩擦力做负功

  D.木块m所受合外力对m做正功。

试题详情

4.飞机在飞行时受到的空气阻力与速率的平方成正比。若飞机以速率V匀速飞行时,发动机的功率为P,则当飞机以速率nV匀速飞行时,发动机的功率为:

   A.np     B.2np     C.n2p        D.n3p。

试题详情

3.静止在光滑水平面上的物体,受到一个水平拉力的作用,该力随时间变化的关系如图31所示,则下列结论正确的是:

    A.拉力在2s内的功不为零;     

    B.物体在2s内的位移不零;

    C.拉力在2s内的冲量不为零;    

  D.物体在2s末的速度为零。

试题详情

2.用力拉质量为M的物体,沿水平面匀速前进S,已知力与水平面的夹角为,方向斜向上,物体与地面间的滑动摩擦系数为,则此力做功为:

A.MgS             B.MgS/Cos

C.MgS/(Cos+Sin)    D.MgSCos/(Cos+Sin)。

试题详情

1.下列说法哪些是正确的?

    A.作用在物体上的力不做功,说明物体的位移为零;

    B.作用力和反作用力的功必然相等,且一正一负;

    C.相互摩擦的物体系统中摩擦力的功的代数和不一定为零;

    D.某一个力的功为零,其冲量不一定为零。

试题详情

在本章知识应用的过程中,初学者常犯的错误主要表现在:“先入为主”导致解决问题的思路过于僵化,如在计算功的问题中,一些学生一看到要计算功,就只想到W= Fscosθ,而不能将思路打开,从W=Pt和W=ΔEt等多条思路进行考虑;不注意物理规律的适用条件,导致乱套机械能守恒定律。

例1  如图3-1,小物块位于光滑斜面上,斜面位于光滑水平地面上,在小物块沿斜面下滑的过程中,斜面对小物块的作用力

A.垂直于接触面,做功为零

B.垂直于接触面,做功不为零

C.不垂直于接触面,做功为零

D.不垂直于接触面,做功不为零

[错解]斜面对小物块的作用力是支持力,应与斜面垂直,因为支持力总与接触面垂直,所以支持力不做功。故A选项正确。

[错解原因]斜面固定时,物体沿斜面下滑时,支持力做功为零。受此题影响,有些人不加思索选A。这反映出对力做功的本质不太理解,没有从求功的根本方法来思考,是形成错解的原因。

[分析解答]根据功的定义W=F·scosθ为了求斜面对小物块的支持力所做的功,应找到小物块的位移。由于地面光滑,物块与斜面体构成的系统在水平方向不受外力,在水平方向系统动量守恒。初状态系统水平方向动量为零,当物块有水平向左的动量时,斜面体必有水平向右的动量。由于m<M,则斜面体水平位移小于物块水平位移。根据图3-2上关系可以确定支持力与物块位移夹角大于90°,则斜面对物块做负功。应选B。

[评析]求解功的问题一般来说有两条思路。一是可以从定义出发。二是可以用功能关系。如本题物块从斜面上滑下来时,减少的重力势能转化为物块的动能和斜面的动能,物块的机械能减少了,说明有外力对它做功。所以支持力做功。

例2  以20m/s的初速度,从地面竖直向上势出一物体,它上升的最大高度是18m。如果物体在运动过程中所受阻力的大小不变,则物体在离地面多高处,物体的动能与重力势能相等。(g=10m/s2)

[错解]以物体为研究对象,画出运动草图3-3,设物体上升到h高处动能与重力势能相等

此过程中,重力阻力做功,据动能定量有

物体上升的最大高度为H

由式①,②,③解得h=9.5m

[错解原因]初看似乎任何问题都没有,仔细审题,问物全体离地面多高处,物体动能与重力势相等一般人首先是将问题变形为上升过程中什么位置动能与重力势能相等。而实际下落过程也有一处动能与重力势能相等。

[分析解答]上升过程中的解同错解。

设物体下落过程中经过距地面h′处动能等于重力势能,运动草图如3-4。

据动能定量

解得h′=8.5m

[评析]在此较复杂问题中,应注意不要出现漏解。比较好的方法就是逐段分析法。

例3  如图3-5,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短。现将子弹、木块和弹簧合在一起作研究对象,则此系统在从子弹开始射入木块到弹簧压缩到最短的过程中 

A.动量守恒,机械能守恒

B.动量不守恒,机械能不守恒

C.动量守恒,机械能不守恒

D.动量不守恒,机械能守恒

[错解]以子弹、木块和弹簧为研究对象。因为系统处在光滑水平桌面上,所以系统水平方向不受外力,系统水平方向动量守恒。又因系统只有弹力做功,系统机械能守恒。故A正确。

[错解原因]错解原因有两个一是思维定势,一见光滑面就认为不受外力。二是规律适用条件不清。

[分析解答]以子弹、弹簧、木块为研究对象,分析受力。在水平方向,弹簧被压缩是因为受到外力,所以系统水平方向动量不守恒。由于子弹射入木块过程,发生巨烈的摩擦,有摩擦力做功,系统机械能减少,也不守恒,故B正确。

例4  如图3-6,质量为M的木块放在光滑水平面上,现有一质量为m的子弹以速度v0射入木块中。设子弹在木块中所受阻力不变,大小为f,且子弹未射穿木块。若子弹射入木块的深度为D,则木块向前移动距离是多少?系统损失的机械能是多少?

[错解](1)以木块和子弹组成的系统为研究对象。系统沿水平方向不受外力,所以沿水平方向动量守恒。设子弹和木块共同速度为v。据动量守恒有mv0=(M+m)v

解得v=mv0

子弹射入木块过程中,摩擦力对子弹做负功

     ①

摩擦力对木块做正功

          ②

将式①代入式②中求得

解得

(2)系统损失的机械能

即为子弹损失的功能

[错解原因]错解①中错误原因是对摩擦力对子弹做功的位移确定错误。子弹对地的位移并不是D,而D打入深度是相对位移。而求解功中的位移都要用对地位移。错解②的错误是对这一物理过程中能量的转换不清楚。子弹打入木块过程中,子弹动能减少并不等于系统机械能减少量。因为子弹减少的功能有一部分转移为木块的动能,有一部转化为焦耳热。

[分析解答]以子弹、木块组成系统为研究对象。画出运算草图,如图3-7。系统水平方向不受外力,故水平方向动量守恒。据动量守恒定律有

mv0=(M+m)v(设v0方向为正)

子弹打入木块到与木块有相同速度过程中摩擦力做功:

由运动草图可S=S-D                 ③

由式①②③解得

[评析]子弹和木块相互作用过程中,子弹的速度由V0减为V,同时木块的速度由0增加到V。对于这样的一个过程,因为其间的相互作用力为恒力,所以我们可以从牛顿运动定律(即f使子弹和木块产生加速度,使它们速度发生变化)、能量观点、或动量观点三条不同的思路进行研究和分析。类似这样的问题都可以采用同样的思路。一般都要首先画好运动草图。例:如图3-8在光滑水平面上静止的长木板上,有一粗糙的小木块以v0沿木板滑行。情况与题中极其相似,只不过作用位置不同,但相互作用的物理过程完全一样。

参考练习:如图3-9一质量为M、长为l的长方形木板B放在光滑的水平地面上,在其右端放一质量为m的小木块A,m<M。现以地面为参考系,给A和B以大小相同,方向相反的初速度,使A开始向左运动,B开始向右运动,但最后A刚好没有滑离B板。求小木块A向左运动到达最远处(对地)离出发点的距离。

 

提示:注意分析物理过程。情景如图3-10。其中隐含条件A刚好没离B板,停在B板的左端,意为此时A,B无相对运动。A,B作用力大小相等,但加速度不同,由于A的加速度大,首先减为零,然后加速达到与B同速。

答案:

例5  下列说法正确的是(  )

A.合外力对质点做的功为零,则质点的动能、动量都不变

B.合外力对质点施的冲量不为零,则质点动量必将改变,动能也一定变

C.某质点受到合力不为零,其动量、动能都改变

D.某质点的动量、动能都改变,它所受到的合外力一定不为零。

[错解]错解一:因为合外力对质点做功为零,据功能定理有△EA=0,因为动能不变,所以速度V不变,由此可知动量不变。故A正确。

错解二:由于合外力对质点施的冲量不为零,则质点动量必将改变,V改变,动能也就改变。故B正确。

[错解原因]形成上述错解的主要原因是对速度和动量的矢量性不理解。对矢量的变化也就出现理解的偏差。矢量发生变化时,可以是大小改变,也可能是大小不改变,而方向改变。这时变化量都不为零。而动能则不同,动能是标量,变化就一定是大小改变。所以△Ek=0只能说明大小改变。而动量变化量不为零就有可能是大小改变,也有可能是方向改变。

[分析解答]本题正确选项为D。

因为合外力做功为零,据动能定理有△Ek=0,动能没有变化,说明速率无变化,但不能确定速度方向是否变化,也就不能推断出动量的变化量是否为零。故A错。合外力对质点施冲量不为零,根据动量定理知动量一定变,这既可以是速度大小改变,也可能是速度方向改变。若是速度方向改变,则动能不变。故B错。同理C选项中合外力不为零,即是动量发生变化,但动能不一定改变,C选项错。D选项中动量、动能改变,根据动量定量,冲量一定不为零,即合外力不为零。故D正确。

[评析]对于全盘肯定或否定的判断,只要找出一反例即可判断。要证明它是正确的就要有充分的论据。

例6  物体m从倾角为α的固定的光滑斜面由静止开始下滑,斜面高为h,当物体滑至斜面底端,重力做功的瞬时功率为(   )

[错解]错解一:因为斜面是光滑斜面,物体m受重力和支持。支持不做功,只有重力做功,所以机械能守恒。设底端势能为零,则有。物体滑至底端速度为。据瞬时功率P=Fv,有P=,故选A。

错解二:物体沿斜面做v0=0的匀加速运动a=mgsina。设滑到底时间为t,由于,则,解得。重力功为mgh,功率为,故选B。

[错解原因]错解一中错误的原因是没有注意到瞬时功率P=Fvcosθ。

只有Fv同向时,瞬时功率才能等于Fv,而此题中重力与瞬时速度V不是同方向,所以瞬时功率应注意乘上F,v夹角的余弦值。

错解二中错误主要是对瞬时功率和平均功率的概念不清楚,将平均功率当成瞬时功率。

[分析解答]由于光滑斜面,物体m下滑过程中机械能守恒,滑至底端时的瞬时速度为,据瞬时功率。由图3-11可知,F、v夹角θ为90°-α。则有滑至底端瞬时功率,故C选项正确。

[评析]求解功率问题首先应注意求解的是瞬时值还是平均值。如果求瞬时值应注意普遍式P=Fv·cosθ(θ为F,v的夹角)当F,v有夹角时,应注意从图中标明。

例7  一列火车由机车牵引沿水平轨道行使,经过时间t,其速度由0增大到v。已知列车总质量为M,机车功率P保持不变,列车所受阻力f为恒力。求:这段时间内列车通过的路程。

[错解]以列车为研究对象,水平方向受牵引力和阻力f。

据P=F·V可知牵引力

F=                      ①

设列车通过路程为s,据动能定理有

                 ②

将①代入②解得

[错解原因]以上错解的原因是对P=F·v的公式不理解,在P一定的情况下,随着v的变化,F是变化的。在中学阶段用功的定义式求功要求F是恒力。

[分析解答]以列车为研究对象,列车水平方向受牵引力和阻力。设列车通过路程为s。据动能定理

               ①

因为列车功率一定,据可知牵引力的功率

解得

[评析]发动机的输出功率P恒定时,据P=F·V可知v变化,F就会发生变化。牵动ΣF,a变化。应对上述物理量随时间变化的规律有个定性的认识。下面通过图象给出定性规律。(见图3-12所示)

例8  如图3-13,质量分别为m和2m的两个小球A和B,中间用轻质杆相连,在杆的中点O处有一固定转动轴,把杆置于水平位置后释放,在B球顺时针摆动到最低位置的过程中(  )

A.B球的重力势能减少,动能增加,B球和地球组成的系统机械能守恒

B.A球的重力势能增加,动能也增加,A球和地球组成的系统机械能不守恒。

C.A球、B球和地球组成的系统机械能守恒

D.A球、B球和地球组成的系统机械不守恒

[错解]B球下摆过程中受重力、杆的拉力作用。拉力不做功,只有重力做功,所以B球重力势能减少,动能增加,机械能守恒,A正确。

同样道理A球机械能守恒,B错误,因为A,B系统外力只有重力做功,系统机械能守恒。故C选项正确。

[错解原因] B球摆到最低位置过程中,重力势能减少动能确实增加,但不能由此确定机械能守恒。错解中认为杆施的力沿杆方向,这是造成错解的直接原因。杆施力的方向并不总指向沿杆的方向,本题中就是如此。杆对A,B球既有沿杆的法向力,也有与杆垂直的切向力。所以杆对A,B球施的力都做功,A球、B球的机械能都不守恒。但A+B整体机械能守恒。

[分析解答]B球从水平位置下摆到最低点过程中,受重力和杆的作用力,杆的作用力方向待定。下摆过程中重力势能减少动能增加,但机械能是否守恒不确定。A球在B下摆过程中,重力势能增加,动能增加,机械能增加。由于A+B系统只有重力做功,系统机械能守恒,A球机械能增加,B球机械能定减少。所以B,C选项正确。

[评析]有些问题中杆施力是沿杆方向的,但不能由此定结论,只要杆施力就沿杆方向。本题中A、B球绕O点转动,杆施力有切向力,也有法向力。其中法向力不做功。如图3-14所示,杆对B球施的力对B球的做负功。杆对A球做功为正值。A球机械能增加,B球机械能减少。

例9  质量为m的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上。平衡时,弹簧的压缩量为x0,如图3-15所示。物块从钢板正对距离为3X0的A处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动。已知物体质量也为m时,它们恰能回到O点,若物块质量为2m,仍从A处自由落下,则物块与钢板回到O点时,还具有向上的速度,求物块向上运动到最高点与O点的距离。

[错解]物块m从A处自由落下,则机械能守恒

设钢板初位置重力势能为0,则

之后物块与钢板一起以v0向下运动,然后返回O点,此时速度为0,运动过程中因为只有重力和弹簧弹力做功,故机械能守恒。

2m的物块仍从A处落下到钢板初位置应有相同的速度v0,与钢板一起向下运动又返回机械能也守恒。返回到O点速度不为零,设为V则:

因为m物块与2m物块在与钢板接触时,弹性势能之比

2m物块与钢板一起过O点时,弹簧弹力为0,两者有相同的加速度g。之后,钢板由于被弹簧牵制,则加速度大于g,两者分离,2m物块从此位置以v为初速竖直上抛上升距离

                           

由式①~④解得代入式⑤解得

[错解原因]这是一道综合性很强的题。错解中由于没有考虑物块与钢板碰撞之后速度改变这一过程,而导致错误。另外在分析物块与钢板接触位置处,弹簧的弹性势能时,也有相当多的人出错,两个错误都出时,会发现无解。这样有些人就返回用两次势能相等的结果,但并未清楚相等的含义。

[分析解答]物块从3x0位置自由落下,与地球构成的系统机械能守恒。则有

v0为物块与钢板碰撞时的的速度。因为碰撞板短,内力远大于外力,钢板与物块间动量守恒。设v1为两者碰撞后共同速

mv0=2mv1                           (2)

两者以vl向下运动恰返回O点,说明此位置速度为零。运动过程中机械能守恒。设接触位置弹性势能为Ep,则

同理2m物块与m物块有相同的物理过程

碰撞中动量守恒2mv0=3mv2            (4)

所不同2m与钢板碰撞返回O点速度不为零,设为v则

因为两次碰撞时间极短,弹性形变未发生变化

Ep=E’p                              (6)

由于2m物块与钢板过O点时弹力为零。两者加速度相同为g,之后钢板被弹簧牵制,则其加速度大于g,所以与物块分离,物块以v竖直上抛。

据运动学公式,则由

                (7)

[评析]本题考查了机械能守恒、动量守恒、能量转化的。守恒等多个知识点。是一个多运动过程的问题。关键问题是分清楚每一个过程。建立过程的物理模型,找到相应解决问题的规律。弹簧类问题,画好位置草图至关重要。

参考练习:如图3-16所示劲度系数为k1的轻质弹簧分别与质量为m1,m2的物体1,2,栓接系数为k2的轻弹簧上端与物体2栓接,下端压在桌面上(不栓接)。整个系统处于平衡状态,现施力将物体1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面,在此过程中,物体2的重力势能增大了多少?物体1的重力势能增大了多少?

提示:此题隐含的条件很多,挖掘隐含条件是解题的前提。但之后,必须有位置变化的情景图如图3-17。才能确定1,2上升的距离,请读者自行解答。

例10  如图3-18所示,轻质弹簧竖直放置在水平地面上,它的正上方有一金属块从高处自由下落,从金属块自由下落到第一次速度为零的过程中

A.重力先做正功,后做负功

B.弹力没有做正功

C.金属块的动能最大时,弹力与重力相平衡

D.金属块的动能为零时,弹簧的弹性势能最大。

[错解]金属块自由下落,接触弹簧后开始减速,当重力等于弹力时,金属块速度为零。所以从金属块自由下落到第一次速度为零的过程中重力一直做正功,故A错。而弹力一直做负功所以B正确。因为金属块速度为零时,重力与弹力相平衡,所以C选项错。金属块的动能为零时,弹力最大,所以形变最大,弹性势能最大。故D正确。

[错解原因]形成以上错解的原因是对运动过程认识不清。对运动性质的判断不正确。金属块做加速还是减速运动,要看合外力方向(即加速度方向)与速度方向的关系。

[分析解答]要确定金属块的动能最大位置和动能为零时的情况,就要分析它的运动全过程。为了弄清运动性质,做好受力分析。可以从图3-19看出运动过程中的情景。

从图上可以看到在弹力N<mg时,a的方向向下,v的方向向下,金属块做加速运动。当弹力N等于重力mg时,a=0加速停止,此时速度最大。所以C选项正确。弹力方向与位移方向始终反向,所以弹力没有做正功,B选项正确。重力方向始终与位移同方向,重力做正功,没有做负功,A选项错。速度为零时,恰是弹簧形变最大时,所以此时弹簧弹性势能最大,故D正确。

所以B,C,D为正确选项。

[评析]对于较为复杂的物理问题,认清物理过程,建立物情景是很重要的。做到这一点往往需画出受力图,运动草图,这是应该具有的一种解决问题的能力。分析问题可以采用分析法和综合法。一般在考试过程中分析法用的更多。如本题A,B只要审题细致就可以解决。而C,D就要用分析法。C选项中动能最大时,速率最大,速率最大就意味着它的变化率为零,即a=0,加速度为零,即合外力为零,由于合外力为mg-N,因此得mg=N,D选项中动能为零,即速率为零,单方向运动时位移最大,即弹簧形变最大,也就是弹性势能最大。本题中金属块和弹簧在一定时间和范围内做往复运动是一种简运振动。从简谐运动图象可以看出位移变化中速度的变化,以及能量的关系。

试题详情

本章中所涉及到的基本方法有:用矢量分解的方法处理恒力功的计算,这里既可以将力矢量沿平行于物体位移方向和垂直于物体位移方向进行分解,也可以将物体的位移沿平行于力的方向和垂直于力的方向进行分解,从而确定出恒力对物体的作用效果;对于重力势能这种相对物理量,可以通过巧妙的选取零势能面的方法,从而使有关重力势能的计算得以简化。

试题详情

本章内容包括功、功率、动能、势能(包括重力势能和弹性势能)等基本概念,以动能定理、重力做功的特点、重力做功与重力势能变化的关系及机械能守恒定律等基本规律。其中对于功的计算、功率的理解、做功与物体能量变化关系的理解及机械能守恒定律的适用条件是本章的重点内容。

试题详情

4.水平弹簧振子的弹簧应为如图6-3a或6-3b的样子。当振子的位置在平衡位置两侧时,弹簧长度是不同的。所以选项D不对。

另外,符合题意条件的不一定非选最大位移处的两点,也可以选其他的点分析,如图6-4P,Q两点,同样可以得出正确结论。

所以此题的正确答案为A,C。

例5  一个做简谐运动的弹簧振子,周期为T,振幅为A,设振子第一次从平衡位置运动到处所经最短时间为t1,第一次从最大正位移处运动到所经最短时间为t2,关于t1与t2,以下说法正确的是:

A.t1=t2         B.t1<t2     C.t1>t2       D.无法判断

[错解] 错解一:因为周期为T,那么,从平衡位置到处,正好是振幅的一半,所以时间为,同理,,所以选A。

错解二:振子从平衡位置向处移动,因为回复力小,所以加速度也小,而从最大位移处(即X=A)向处移动时,回复力大,加速度也大,因而时间短,所以t1>t2,应选C。

错解三:因为这是一个变加速运动问题,不能用匀速运动或匀变速运动规律求解,因而无法判断t1和t2的大小关系,所以选D。

[错解原因]  主要是对简谐运动的特殊运动规律不清楚,只记住了周期公式,没注意分析简谐运动的全过程,没能深入地理解和掌握这种运动形式的特点。因而解题时错误地沿用了匀速或匀变速运动的规律,选择A的同学就是用匀速运动规律去解,而选择C的同学用了匀变速运动规律去解,因而错了。事实上,简谐运动的过程有其自身的许多规律,我们应该用它的特殊规律去求解问题,而不能用匀速或匀变速运动规律去求解。

[分析解答]  方法一:用图象法,画出x-t图象,从图象上,我们可以很直观地看出:t1<t2,因而正确答案为:B。

方法二:从图象为正弦曲线和数学知识可写出位移随时间的函数关系式,物理学上称为振动方程,从平衡位置开始,振子的振动方程为:

,当,最短时间t1,即:

解得:

而振子从最大位移处运动到处最短时间为t2,即

­

解得:。可以得出结论t1<t2,选B。

[评析]  以上两种方法,第一种方法是定性分析,在选择题练习时,是要重点掌握的。第二种方法可以进行定量计算,但由于要涉及振动方程,所以不做统一要求。

另外,由于振动具有周期性。从平衡位置计时,振子到达处的时间可以表达为,从最大位移处到达处的时间可以表达为t'=nT+t2。此处,为了题目简明起见,题文中用了“第一次”和“最短时间”等字样。否则就无法比较两个过程所用时间的长短。

例6  图6-6中实线是一列简谐波在某一时刻的波形图线,虚线是0.2s后它的波形图线。这列波可能的传播速度是_______。

[错解]  从图上可以看出波长λ=4m,而从两次的波形图可知:

,所以T=0.8s

由波速公式:,代入数据

v=5m/s.

[错解原因]

(1)在没有分析出此波的传播方向前,就认定,是不全面的。实际上,只有当波向右(沿x正方向)传播时,上述关系才成立。

(2)没有考虑到波的传播过程的周期性。也就是说,不仅后的波形如虚线所示。……后的波形均与后的波形相同。

[分析解答]  从图上可以看出λ=4m。

当波沿x正方向传播时,两次波形之间间隔的时间为:

……

  

由波速公式:,代入数据

解得:(n=0,1,2……)

当波沿x正方向传播时,两次波形之间间隔的时间为:

……

  

由波速公式:,代入数据

解得:(n=0,1,2……)

此题的答案为:(20n+5)m/s和(20m+15)m/s,(n=0,1,2,…)

[评析]  对于这种已知条件较为含糊的波的问题,要从波的传播方向、时间和空间的周期性等方面进行全面周到的分析,这也是解决机械波问题时,初学者经常忽略的问题。

例7  一简谐波的波源在坐标原点o处,经过一段时间振动从o点向右传播20cm到Q点,如图6-7所示,P点离开o点的距离为30cm,试判断P质点开始振动的方向。

[错解]从图6-7看,P点距Q点相差,则波再向前传播就传到P点,所以画出如图6-8所示的波形图。因为波源在原点,波沿x轴正方向传播,所以可判定,P点开始振动的方向是沿y轴正方向(即向上)。

[错解原因]  主要原因是把机械波的图象当成机械振动的图象看待。而薄的形成是质点依次带动的结果,在波向前传播的同时,前面的波形也变化了。

[分析解答]  因为原图中的波形经历了半个周期的波形如图6-9所示,在此波形基础上,向前延长半个波形即为P点开始振动时的波形图,因为波源在原点处,所以介质中的每个质点都被其左侧质点带动,所以P点在刚开始时的振动方向沿y轴负方向(即向下)从另外一个角度来看,原图中Q点开始振动时是向下的,因为所有质点开始振动时的情况均相同,所以P点开始振动的方向应是向下的。

[评析]  本题中的错解混淆了振动图象与波的图象,那么这两个图象有什么不同呢?(1)首先两个图象的坐标轴所表示的物理意义不同:振动图象的横坐标表示时间,而波动图象的横坐标表示介质中各振动质点的平衡位置。(2)两个图象所描述的对象不同:振动图象描述的是一个质点的位移随时间的变化情况,而波的图象描述的是介质中的一群质点某一时刻各自振动所到达的位置情况。通俗地说:振动图象相当于是在一般时间内一个质点运动的“录像”,而波的图象则是某一时刻一群质点振动的“照片”。(3)随着时间的推移,振动图象原来的形状(即过去质点不同时刻所到达的位置不再发生变化,而波的图象由于各质点总在不断地振动,因此随着时间的推移,原有的图象将发生周期性变化。

例8  图6-10是某时刻一列横波在空间传播的波形图线。已知波是沿x轴正方向传播,波速为4m/s,试计算并画出经过此时之后1.25s的空间波形图。

   [错解]错解一:由图可以看出,波长,由可知T=2s。经过1.25s,波向右传播了个波长,波长如图6-11。

错解二:波长,经过1.25s,波向左传播了个波长,波长如图6-12。

错解三:由,经过1.25s,波向右传播了个波长,其波形如图6-13。

[错解原因]  错解一、错解二没有重视单位的一致性,在此题中波长从图中只能得出λ=8cm,而波速给出的却是国际单位4m/s。因此,求周期时,应先将波长的单位统一到国际单位制上来。

错解三虽然计算对了,但是,在波向前(沿x轴正方向)传播了62.5个波长时的波形,应是在原来的波形基础上向x正方扩展62.5个波长。

[分析解答]由波形图已知,由经过t=1.25s,即相等于经过个周期,而每经过一个周期,波就向前传播一个波长。经过62.5个周期,波向前传播了62.5个波长。据波的周期性,当经过振动周期的整数倍时,波只是向前传播了整数倍个波长,而原有的波形不会发生变化,就本题而言,可以先画出经过周期后的波形,如图6-14。再将此图向前扩展62个波长即为题目要求,波形如图6-15。

[评析]  波形图反映了波在传播过程中某时刻在波的传播方向上各质点离开平衡位置的位移情况,由于波只能以有限的速度向前传播,所以离振源远的质点总要滞后一段时间,滞后的时间与传播的距离成正比,即滞后一个周期。两个质点之间的平衡位置距离就是一个波长,经过多少个周期,波就向前传播了多少个波长,而振源就做了多少次全振动,这就是此类问题的关键所在。

例9  如图6-16所示,一列简谐横波沿x轴正方向传播,从波传到x=5m的M点时开始计时,已知P点相继出现两个波峰的时间间隔为0.4s,下面说法中正确的是 

A.这列波的波长是4m

B.这列波的传播速度是10m/s

C.质点Q(x=9m)经过0.5s才第一次到达波峰

D.M点以后各质点开始振动时的方向都是向下

[错解]  错解一:由题中说P点相继出现两个波峰的时间间隔为0.4s,所以间隔一个波峰的时间为,即0.2s,所以T=0.2s,由波速公式=,所以B不对。

错解二:质点Q(x=9m),经过0.4s(此处用了正确的周期结果即B选项做对了)波传到它,又经过(0.1s)Q点第一次到达波峰,所以C对。

错解三:M点以后各质点的振动有的向上,有的向下,所以D不对。

[错解原因]  错解一对“相继出现两个波峰”理解有误。

错解二对质点Q(x=9m)处,当波传到它以后,该点应如何振动不会分析,实际上也就是对波的传播原理不明白。不知道波的传播是机械振动在介质中传递的过程,质点要依次被带动形成波。

同理,错解三对M点以后各点运动情况分析有误,实际上M点以后各点运动情况向上还是向下取决于波的传播方向。

[分析解答]  (1)从图6-16上可以看出波长为4m,选A。

(2)实际上“相继出现两个波峰”应理解为,出现第一波峰与出现第二个波峰之间的时间间隔。因为在一个周期内,质点完成一次全振动,而一次全振动应表现为“相继出现两个波峰”,即T=0.4s。则=10(m/s),所以选项B 是对的。

(3)质点Q(x=9m)经过0.4s开始振动,而波是沿x轴正方向传播,即介质中的每一个质点都被它左侧的质点所带动,从波向前传播的波形图6-17可以看出,0.4s波传到Q时,其左侧质点在它下方,所以Q点在0.5s时处于波谷。再经过0.2ss即总共经过0.7s才第一次到达波峰,所以选项C错了。

(4)从波的向前传播原理可以知道,M以后的每个质点都是先向下振动的。所以选项D是对的。

此题正确答案为A,B,D。

[评析]

例10  如图6-18所示,一根张紧的水平弹性长绳上的a,b两点,相距14.0m,b点在a点的右方,当一列简谐横波沿此长绳向右传播时,若a点的位移达到正最大时,b点的位移恰为零且向下运动。经过1.00s后a点的位移为零,且向下运动,而b点的位移恰达到负最大,则这简谐波的波速可能等于

A.4.67m/s               B.6m/s

C.10m/s                 D.4m/s

[错解]由对题目的分析可以知道,a,b之间间隔,所以

=14.0m  

=1.00s   T=4.00s

由波速公式代入数据解得

v=4.67m/s选择A。

但此题可能多选,考虑到a,b之间满足条件的情况还可以为……而第一状态与第二状态之间间隔时间为或1

即当 =14.0m,

而1=1.00s,

则波速

解得:v=10m/s  选择C

=14.0m,

而2=1.00s,

则波速

解得:v=11.5m/s显然不符合题目中的选项,且通过分析可知v=14m/s也是不对的,所以正确答案为A,C。

[错解原因]以上答案并没有错,但分析问题的过程出现了明显的错误,即把a,b之间存在……与两种状态之间的时间间隔,1,2……着两个没有必然联系的事件用意一一对应的关系联系起来,认为当a,b之间为时,必有间隔,而a,b之间为1时,必有间隔时间为1……结果导致在计算过程中,漏了不少结论。而此题做为选择题,学生能用错误的思维方式得出符合答案的结果,纯属偶然。

[分析解答]依题意,a,b之间为……+,或者为(n=0,1,2,3……)。而两个时刻之间的时间间隔为,1,2……+NT

(N=0,1,2,3……)

波长λ有一系列数据,周期T也有一系列数据,从波的概念出发,两者并无一一对应,因而波速应为

其解为当n=0,N=0,1,2……

n=1,N=0,1,2……

n=2,N=0,1,2……

我们可以通过列表来看一看波速的各种可能值:

N
n
0
1
2
3

0
4.67
2
1.27
0.933
 
1
23.3
10
6.36
4.67
 
2
42
18
11.5
8.4
 
3
60.7
26
16.6
12.1
 






从表中可以看出,4.67m/s及10m/s即为正确答案。所以正确答案应选A,C。

试题详情

3.同错解3。

试题详情


同步练习册答案