题目列表(包括答案和解析)

 0  137631  137639  137645  137649  137655  137657  137661  137667  137669  137675  137681  137685  137687  137691  137697  137699  137705  137709  137711  137715  137717  137721  137723  137725  137726  137727  137729  137730  137731  137733  137735  137739  137741  137745  137747  137751  137757  137759  137765  137769  137771  137775  137781  137787  137789  137795  137799  137801  137807  137811  137817  137825  447348 

2、如图2-1所示,轻质长绳水平地跨在相距为2L的两个小定滑轮A、B上,质量为m的物块悬挂在绳上O点,O与A、B两滑轮的距离相等。在轻绳两端C、D分别施加竖直向下的恒力F=mg。先托住物块,使绳处于水平拉直状态,由静止释放物块,在物块下落过程中,保持C、D两端的拉力F不变。

(1)当物块下落距离h为多大时,物块的加速度为零?

(2)在物块下落上述距离的过程中,克服C端恒力F做功W为多少?

(3)求物块下落过程中的最大速度Vm和最大距离H?

分析与解:物块向下先作加速运动,随着物块的下落,两绳间的夹角逐渐减小。因为绳子对物块的拉力大小不变,恒等于F,所以随着两绳间的夹角减小,两绳对物块拉力的合力将逐渐增大,物块所受合力逐渐减小,向下加速度逐渐减小。当物块的合外力为零时,速度达到最大值。之后,因为两绳间夹角继续减小,物块所受合外力竖直向上,且逐渐增大,物块将作加速度逐渐增大的减速运动。当物块下降速度减为零时,物块竖直下落的距离达到最大值H。

当物块的加速度为零时,由共点力平衡条件可求出相应的θ角,再由θ角求出相应的距离h,进而求出克服C端恒力F所做的功。

对物块运用动能定理可求出物块下落过程中的最大速度Vm和最大距离H。

(1)当物块所受的合外力为零时,加速度为零,此时物块下降距离为h。因为F恒等于mg,所以绳对物块拉力大小恒为mg,由平衡条件知:2θ=120°,所以θ=60°,由图2-2知:h=L×tg30°=L               [1]

(2)当物块下落h时,绳的C、D端均上升h’,由几何关系可得:h’=-L   [2]

克服C端恒力F做的功为:W=F*h’             [3]

由[1]、[2]、[3]式联立解得:W=(-1)mgL

(3)出物块下落过程中,共有三个力对物块做功。重力做正功,两端绳子对物块的拉力做负功。两端绳子拉力做的功就等于作用在C、D端的恒力F所做的功。因为物块下降距离h时动能最大。由动能定理得:mgh-2W=      [4]

将[1]、[2]、[3]式代入[4]式解得:Vm=

当物块速度减小为零时,物块下落距离达到最大值H,绳C、D上升的距离为H’。由动能定理得:mgH-2mgH’=0,又H’=-L,联立解得:H=

试题详情

1、如图1-1所示,长为5米的细绳的两端分别系于竖立在地面上相距为4米的两杆顶端A、B。绳上挂一个光滑的轻质挂钩。它钩着一个重为12牛的物体。平衡时,绳中张力T=____

分析与解:本题为三力平衡问题。其基本思路为:选对象、分析力、画力图、列方程。对平衡问题,根据题目所给条件,往往可采用不同的方法,如正交分解法、相似三角形等。所以,本题有多种解法。

解法一:选挂钩为研究对象,其受力如图1-2所示

设细绳与水平夹角为α,由平衡条件可知:2TSinα=F,其中F=12牛

将绳延长,由图中几何条件得:Sinα=,则代入上式可得T=10牛。

解法二:挂钩受三个力,由平衡条件可知:两个拉力(大小相等均为T)的合力F’与F大小相等方向相反。以两个拉力为邻边所作的平行四边形为菱形。如图1-2所示,其中力的三角形△OEG与△ADC相似,则:得:牛。

想一想:若将右端绳A 沿杆适当下移些,细绳上张力是否变化?

(提示:挂钩在细绳上移到一个新位置,挂钩两边细绳与水平方向夹角仍相等,细绳的张力仍不变。)

试题详情

15、如图14-1所示,长为L,质量为m1的物块A置于光滑水平面上,在A的水平上表面左端放一质量为m2的物体B,B与A的动摩擦因数为μ。A和B一起以相同的速度V向右运动,在A与竖直墙壁碰撞过程中无机械能损失,要使B一直不从A上掉下来,V必须满足什么条件?(用m1、m2,L及μ表示)

分析与解:A与墙壁发生无机械能损失的碰撞后,A以大小为V的速度向左运动,B仍以原速度V向右运动,以后的运动过程有三种可能:(1)若m1>m2,则m1和m2最后以某一共同速度向左运动;(2)若m1=m2,则A、B最后都停止在水平面上,但不再和墙壁发生第二次碰撞;(3)若m1<m2,则A将多次和墙壁碰撞,最后停在靠近墙壁处。

若m1>m2时,碰撞后系统的总动量方向向左,大小为:P=m1V-m2V

设它们相对静止时的共同速度为V’,据动量守恒定律, 有:m1V-m2V=(m1+m2)V’

所以V’=(m1-m2)V/(m1+m2)

若相对静止时B正好在A的右端,则系统机械能损失应为μm2gL,

则据能量守恒:m1V2+m2V2-(m1+m2)(m1-m2)2V2/(m1+m2)2=μm2gL

解得:V=

若m1=m2时,碰撞后系统的总动量为零,最后都静止在水平面上,

设静止时A在B的右端,则有:m1V2+m2V2=μm2gL

 解得:V=

若m1<m2时,则A和墙壁能发生多次碰撞,每次碰撞后总动量方向都向右,

设最后A静止在靠近墙壁处时,B静止在A的右端,

同理有:m1V2+m2V2=μm2gL

解得:V=

故:若m1>m2,V必须小于或等于

若m1≤m2,V必须小于或等于

注意:本题中,由于m1和m2的大小关系没有确定,在解题时必须对可能发生的物理过程进行讨论,分别得出不同的结果。

试题详情

14、如图13-1所示,物体A从高h的P处沿光滑曲面从静止开始下滑,物体B用长为L的细绳竖直悬挂在O点且刚和平面上Q点接触。已知mA=mB,高h及S(平面部分长)。若A和B碰撞时无能量损失。(1)若L≤h/4,碰后A、B各将做什么运动?(2)若L=h,且A与平面的动摩擦因数为μ,A、B可能碰撞几次?A最终在何处?

分析与解:当水平部分没有摩擦时,A球下滑到未碰B球前能量守恒,与B碰撞因无能量损失,而且质量相等,由动量守恒和能量守恒可得两球交换速度。A 停在Q处,B碰后可能做摆动,也可能饶 O点在竖直平面内做圆周运动。如果做摆动,则经一段时间,B反向与A相碰,使A又回到原来高度,B停在Q处,以后重复以上过程,如此继续下去,若B做圆周运动,B逆时针以O为圆心转一周后与A相碰,B停在Q处,A向右做匀速运动。由此分析,我们可得本题的解如下:

(1)A与B碰撞前A的速度:mgh=mVA2,VA=

因为mA=mB,碰撞无能量损失,两球交换速度,得:VA’=0,VB’=VA=

设B球到最高点的速度为Vc,B做圆周运动的临界条件:mBg=mBV2/L [1]

又因mBVB2=mBV2+mBg2L [2]

将[1]式及VB’=代入[2]式得:L=2h/5

即L≤2h/5时,A、B碰后B才可能做圆周运动。而题意为L=h/4<2h/5,故A与B碰后,B必做圆周运动。因此(1)的解为:A与B碰后A停在Q处,B做圆周运动,经一周后,B再次与A相碰,B停在Q处,A向右以速度做匀速直线运动。

(2)由上面分析可知,当L=h时,A与B碰后,B只做摆动,因水平面粗糙,所以A在来回运动过程中动能要损失。设碰撞次数为n,由动能定理可得:

  mAgh-nμmAgS=0 所以n=h/μS

讨论:若n为非整数时,相碰次数应凑足整数数目。

  如n=1.2,则碰撞次数为两次。

当n为奇数时,相碰次数为(n-1)次。如n=3,则相碰次数为两次,且A球刚到达Q处将碰B而又未碰B;

当n为偶数时,相碰次数就是该偶数的数值,如n=4,则相碰次数为四次。球将停在距B球S处的C点。A球停留位置如图13-2所示。

试题详情

13、如图12-1所示,有两块大小不同的圆形薄板(厚度不计),质量分别为M和m,半径分别为R和r,两板之间用一根长为0.4m的轻绳相连结。开始时,两板水平放置并叠合在一起,静止于高度为0.2m处。然后自由下落到一固定支架C上,支架上有一半径为R‘(r<R’<R)的圆孔,圆孔与两薄板中心均在圆板中心轴线上,木板与支架发生没有机械能损失的碰撞。碰撞后,两板即分离,直到轻绳绷紧。在轻绳绷紧的瞬间,两物体具有共同速度V,如图12-2所示。求:(1)若M=m,则V值为多大 (2)若M/m=K,试讨论 V的方向与K值间的关系。

   

分析与解:开始 M与m自由下落,机械能守恒。

M与支架C碰撞后,M以原速率返回,向上做匀减速运动。m向下做匀加速运动。在绳绷紧瞬间,内力(绳拉力)很大,可忽略重力,认为在竖直方向上M与m系统动量守恒。(1)据机械能守恒:(M+m)gh=(M+m)V02 所以,V0==2m/s

M碰撞支架后以Vo返回作竖直上抛运动,m自由下落做匀加速运动。在绳绷紧瞬间,M速度为V1,上升高度为h1,m的速度为V2,下落高度为h2。则:

 h1+h2=0.4m,h1=V0t-gt2,h2=V0t+gt2,而h1+h2=2V0t,

故:

所以:V1=V0-gt=2-10×0.1=1m/s V2=V0+gt=2+10×0.1=3m/s

根据动量守恒,取向下为正方向,mV2-MV1=(M+m)V,所以

那么当m=M时,V=1m/s;当M/m=K时,V=

讨论:①K<3时,V>0,两板速度方向向下。

②K>3时,V<0,两板速度方向向上。

③K=3时,V=0,两板瞬时速度为零,接着再自由下落。

试题详情

12、质量为m的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上。平衡时,弹簧的压缩量为Xo,如图11-1所示。一物块从钢板正上方距离为 3Xo的A处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连。它们到达最低点后又向上运动。已知物块质量也为m时,它们恰能回到O点。若物块质量为2m,仍从A处自由落下,则物块与钢板回到O点时,还具有向上的速度。求物块向上运动到达的最高点O点的距离。

分析与解:物块自由下落,与钢板碰撞,压缩弹簧后再反弹向上,运动到O点,弹簧恢复原长。碰撞过程满足动量守恒条件。压缩弹簧及反弹时机械能守恒。自由下落3Xo,根据机械能守恒:

  所以  物块与钢板碰撞时,根据动量守恒:  mv0=(m+m)v1(v1为碰后共同速度)

  V1=V0/2=

物块与钢板一起升到O点,根据机械能守恒:2mV12+Ep=2mgx0 [1]

如果物块质量为2m,则:2mVo=(2m+m)V2 ,即V2=Vo

设回到O点时物块和钢板的速度为V,则:3mV22+Ep=3mgx0+3mV2 [2]

从O点开始物块和钢板分离,由[1]式得:

  Ep=mgx0 代入[2]得:m(Vo)2+mgx0=3mgx0+3mV2

所以,V2=gx0     

高中物理典型例题汇编(二)

试题详情

11、如图10-1所示,劲度系数为 K的轻质弹簧一端与墙固定,另一端与倾角为θ的斜面体小车连接,小车置于光滑水平面上。在小车上叠放一个物体,已知小车质量为 M,物体质量为m,小车位于O点时,整个系统处于平衡状态。现将小车从O点拉到B点,令OB=b,无初速释放后,小车即在水平面B、C间来回运动,而物体和小车之间始终没有相对运动。求:(1)小车运动到B点时的加速度大小和物体所受到的摩擦力大小。(2)b的大小必须满足什么条件,才能使小车和物体一起运动过程中,在某一位置时,物体和小车之间的摩擦力为零。

分析与解:

(1)所求的加速度a和摩擦力f是小车在B点时的瞬时值。取M、m和弹簧组成的系统为研究对象,由牛顿第二定律:kb=(M+m)a   所以a=kb/(M+m)。

  取m为研究对象,在沿斜面方向有:f-mgsinθ=macosθ

所以,f=mgsinθ+mcosθ=m(gsinθ+cosθ)

(2)当物体和小车之间的摩擦力的零时,小车的加速度变为a’,小车距O点距离为b’,取m为研究对象,有:mgsinθ=ma’cosθ

取M、m和弹簧组成的系统为研究对象,有:kb‘=(M+m)a’

以上述两式联立解得:b‘=(M+m)gtgθ

  说明:在求解加速度时用整体法,在分析求解m受到的摩擦力时用隔离法。整体法和隔离法两者交互运用是解题中常用的方法,希读者认真掌握。

试题详情

10、如图9-1所示,质量为M=3kg的木板静止在光滑水平面上,板的右端放一质量为m=1kg的小铁块,现给铁块一个水平向左速度V0=4m/s,铁块在木板上滑行,与固定在木板左端的水平轻弹簧相碰后又返回,且恰好停在木板右端,求铁块与弹簧相碰过程中,弹性势能的最大值EP

分析与解:在铁块运动的整个过程中,系统的动量守恒,因此弹簧压缩最大时和铁块停在木板右端时系统的共同速度(铁块与木板的速度相同)可用动量守恒定律求出。在铁块相对于木板往返运动过程中,系统总机械能损失等于摩擦力和相对运动距离的乘积,可利用能量关系分别对两过程列方程解出结果。

设弹簧压缩量最大时和铁块停在木板右端时系统速度分别为V和V’,由动量守恒得:mV0=(M+m)V=(M+m)V’ 所以,V=V’=mV0/(M+m)=1X4/(3+1)=1m/s

铁块刚在木板上运动时系统总动能为:EK=mV02=0.5X1X16=8J

弹簧压缩量最大时和铁块最后停在木板右端时,系统总动能都为:

EK’=(M+m)V2=0.5X(3+1)X1=2J

铁块在相对于木板往返运过程中,克服摩擦力f所做的功为:

Wf=f2L=EK-EK’=8-2=6J

铁块由开始运动到弹簧压缩量最大的过程中,系统机械能损失为:fs=3J

由能量关系得出弹性势能最大值为:EP=EK-EK‘-fs=8-2-3=3J

说明:由于木板在水平光滑平面上运动,整个系统动量守恒,题中所求的是弹簧的最大弹性势能,解题时必须要用到能量关系。在解本题时要注意两个方面:①是要知道只有当铁块和木板相对静止时(即速度相同时),弹簧的弹性势能才最大;弹性势能量大时,铁块和木板的速度都不为零;铁块停在木板右端时,系统速度也不为零。

②是系统机械能损失并不等于铁块克服摩擦力所做的功,而等于铁块克服摩擦力所做的功和摩擦力对木板所做功的差值,故在计算中用摩擦力乘上铁块在木板上相对滑动的距离。

试题详情

9、如图8-1所示,质量为m=0.4kg的滑块,在水平外力F作用下,在光滑水平面上从A点由静止开始向B点运动,到达B点时外力F突然撤去,滑块随即冲上半径为 R=0.4米的光滑圆弧面小车,小车立即沿光滑水平面PQ运动。设:开始时平面AB与圆弧CD相切,A、B、C三点在同一水平线上,令AB连线为X轴,且AB=d=0.64m,滑块在AB面上运动时,其动量随位移的变化关系为P=1.6kgm/s,小车质量M=3.6kg,不计能量损失。求:

(1)滑块受水平推力F为多大? (2)滑块通过C点时,圆弧C点受到压力为多大? (3)滑块到达D点时,小车速度为多大? (4)滑块能否第二次通过C点? 若滑块第二次通过C点时,小车与滑块的速度分别为多大? (5)滑块从D点滑出再返回D点这一过程中,小车移动距离为多少? (g取10m/s2)

  分析与解:(1)由P=1.6=mv,代入x=0.64m,可得滑块到B点速度为:

    VB=1.6/m=1.6/m =3.2m/s

   A→B,由动能定理得:FS=mVB2

    所以 F=m =0.4×3.22/(2×0.64)=3.2N

(2)滑块滑上C立即做圆周运动,由牛顿第二定律得:

    N-mg=m 而VC=VB 则  

N=mg+m=0.4×10+0.4×3.22/0.4=14.2N

(3)滑块由C→D的过程中,滑块和小车组成系统在水平方向动量守恒,由于滑块始终紧贴着小车一起运动,在D点时,滑块和小车具有相同的水平速度VDX 。由动量守恒定律得:mVC=(M+m)VDX

所以 VDX=mVC/(M+m)=0.4X3.2/(3.6+0.4)=0.32m/s

(4)滑块一定能再次通过C点。因为滑块到达D点时,除与小车有相同的水平速度VDX外,还具有竖直向上的分速度VDY,因此滑块以后将脱离小车相对于小车做竖直上抛运动(相对地面做斜上抛运动)。因题中说明无能量损失,可知滑块在离车后一段时间内,始终处于D点的正上方(因两者在水平方向不受力作用,水平方向分运动为匀速运动,具有相同水平速度), 所以滑块返回时必重新落在小车的D点上,然后再圆孤下滑,最后由C点离开小车,做平抛运动落到地面上。由机械能守恒定律得:

mVC2=mgR+ (M+m)VDX2+mVDY2

所以

以滑块、小车为系统,以滑块滑上C点为初态,滑块第二次滑到C点时为末态,此过程中系统水平方向动量守恒,系统机械能守恒(注意:对滑块来说,此过程中弹力与速度不垂直,弹力做功,机械能不守恒)得:

   mVC=mVC‘+MV 即mVC2=mVC2+MV2

上式中VC‘、V分别为滑块返回C点时,滑块与小车的速度,

     V=2mVC/(M+m)=2X0.4X3.2/(3.6+0.4)=0.64m/s

   VC’=(m-M)VC/(m+M)=(0.4-3.6)X3.2/(0.4+3.6)=-2.56m/s(与V反向)

(5)滑块离D到返回D这一过程中,小车做匀速直线运动,前进距离为:

   △S=VDX2VDY/g=0.32×2×1.1/10=0.07m

试题详情

18.如图17-1所示,A、B是静止在水平地面上完全相同的两块长木板.A的左端和B的右端相接触.两板的质量皆为M=2.0kg,长度皆为L=1.0m。C是质量为m=1.0 kg的小物块.现给它一初速度v0=2.0m/s,使它从板B的左端向右滑动.已知地面是光滑的,而C与板A、B之间的动摩擦因数皆为μ=0.10。求最后A、B、C各以多大的速度做匀速运动.取重力加速度g=10m/s2

参考解答 先假设小物块C在木板B上移动x距离后,停在B上.这时A、B、C三者的速度相等,设为v,由动量守恒得

mv0=(m+2M)v,   ①

在此过程中,木板B的位移为s,小物块C的位移为s+x.由功能关系得

-μmg(s+x)=(1/2)mv2-(1/2)mv02

μmgs=2Mv2/2,

则 -μmgx=(1/2)(m+2M)v2-(1/2)mv02,②

由①、②式,得

x=[mv02/(2M+m)μg],     ③

代入数值得 x=1.6m.        ④

x比B板的长度大.这说明小物块C不会停在B板上,而要滑到A板上.设C刚滑到A板上的速度为v1,此时A、B板的速度为v2,则由动量守恒得

mv0=mv1+2Mv2,        ⑤

由功能关系,得(1/2)mv02-(1/2)mv12-2×(1/2)mv22=μmgL,

以题给数据代入,得

由v1必是正值,故合理的解是

  

当滑到A之后,B即以v2=0.155m/s做匀速运动,而C是以v1=1.38m/s的初速在A上向右运动.设在A上移动了y距离后停止在A上,此时C和A的速度为v3,由动量守恒得

Mv2+mv1=(m+M)v3

解得 v3=0.563m/s.

由功能关系得

(1/2)mv12+(1/2)mv22-(1/2)(m+M)v32=μmgy,

解得  y=0.50m.

y比A板的长度小,所以小物块C确实是停在A板上.最后A、B、C的速度分别为vA=v3=0.563m/s,vB=v2=0.155m/s,vC=vA=0.563m/s.

评分标准 本题的题型是常见的碰撞类型,考查的知识点涉及动量守恒定律与动能关系或动力学和运动学等重点知识的综合,能较好地考查学生对这些重点知识的掌握和灵活运动的熟练程度.题给数据的设置不够合理,使运算较复杂,影响了学生的得分.从评分标准中可以看出,论证占的分值超过本题分值的50%,足见对论证的重视.而大部分学生在解题时恰恰不注重这一点,平时解题时不规范,运算能力差等,都是本题失分的主要原因.

试题详情


同步练习册答案