题目列表(包括答案和解析)

 0  137799  137807  137813  137817  137823  137825  137829  137835  137837  137843  137849  137853  137855  137859  137865  137867  137873  137877  137879  137883  137885  137889  137891  137893  137894  137895  137897  137898  137899  137901  137903  137907  137909  137913  137915  137919  137925  137927  137933  137937  137939  137943  137949  137955  137957  137963  137967  137969  137975  137979  137985  137993  447348 

3. 既然每隔的时间振子的动量大小相等,又因为振子质量一定,所以振子的动能总是相同的,所以选C是对的。

试题详情

在本章知识应用的过程中,初学者常犯的错误主要表现在:对于诸如机械振动、简谐运动、受迫振动、共振、阻尼振动、等幅振动等众多的有关振动的概念不能深刻的理解,从而造成混淆;不能从本质上把握振动图象和波的图象的区别和联系,这主要是由于振动的图象与波的图象形式上非常相似,一些学生只注意图象的形状,而忽略了图象中坐标轴所表示的物理意义,因此造成了将两个图象相混淆。另外,由于一些学生对波的形成过程理解不够深刻,导致对于波在传播过程中时间和空间的周期性不能真正的理解和把握;由于干涉和衍射的发生条件、产生的现象较为抽象,所以一些学生不能准确地把握相关的知识内容,表现为抓不住现象的主要特征、产生的条件混淆不清。

例1  一个弹簧振子,第一次被压缩x后释放做自由振动,周期为T1,第二次被压缩2x后释放做自由振动,周期为T2,则两次振动周期之比T1∶T2

A.1∶1     B.1∶2    

C.2∶1     C.1∶4

[错解]  压缩x时,振幅为x,完成一次全振动的路程为4x。压缩2x时,振幅即为2x,完成一次全振动的路程为8x。由于两种情况下全振动的路程的差异,第二次是第一次的2倍。所以,第二次振动的周期一定也是第一次的2倍,所以选B。

[错解原因]上述解法之所以错误是因为把振子的运动看成是匀速运动或加速度恒定的匀加速直线运动了。用了匀速或匀加速运动的规律。说明这些同学还是没有掌握振动的特殊规律。

[分析解答]事实上,只要是自由振动,其振动的周期只由自身因素决定,对于弹簧振子而言,就是只由弹簧振子的质量m和弹簧的劲度系数k决定的,而与形变大小、也就是振幅无关。所以只要弹簧振子这个系统不变(m,k不变),周期就不会改变,所以正确答案为A。

[评析]本题给出的错解是初学者中最常见的错误。产生这一错误的原因是习惯于用旧的思维模式分析新问题,而不善于抓住新问题的具体特点,这反映了学习的一种思维定势。只有善于接受新知识、新方法,并将其运用到实际问题中去,才能开阔我们分析、解决问题的思路,防止思维定势。

例2 一个单摆,如果摆球的质量增加为原来的4倍,摆球经过平衡位置时的速度减为原来的,则单摆的

A.频率不变,振幅不变         B.频率不变,振幅改变

C.频率改变,振幅不变         D.频率改变,振幅改变

[错解]  错解一:因为单摆的周期(频率)是由摆长l和当地重力加速度g决定的,所以频率是不变的,而从动能公式上看:,质量变为原来的4倍,速度变为原来的,结果动能不变,既然动能不变(指平衡位置动能也就是最大动能),由机械能守恒可知,势能也不变。所以振幅也不变,应选A。

错解二:认为速度减为原来的,即运动得慢了,所以频率要变,而振幅与质量、速度无关(由上述理由可知)所以振幅不变,应选C。

错解三:认为频率要改变,理由同错解二。而关于振幅的改变与否,除了错解一中所示理由外,即总能量不变,而因为重力势能EP=mgh,EP不变,m变为原来的4倍,h一定变小了,即上摆到最高点的高度下降了,所以振幅要改变,应选D。

[错解原因]此题主要考查决定单摆频率(周期)和振幅的是什么因素,而题中提供了两个变化因素,即质量和最大速度,到底频率和振幅与这两个因素有没有关系。若有关系,有什么关系,是应该弄清楚的。

而错解二和错解三中都认为频率不变,这是因为为不清楚决定单摆的因素是摆长l和当地重力加速度g,而与摆球质量及运动到最低点的速度无关。

错解二中关于频率不变的判断是正确的,错误出现在后半句的结论上。判断只从能量不变去看,当E不变时,EP=mgh,m变大了,h一定变小。说明有些同学考虑问题还是不够全面。

[分析解答] (1)实际上,通过实验我们已经了解到,决定单摆周期的是摆长及当地重力加速度,并进一步找到周期公式:,单摆的周期与质量无关,与单摆的运动速度也无关。当然,频率也与质量和速度无关,所以不能选C,D。

(2)决定振幅的是外来因素。反映在单摆的运动中,可以从能量去观察,从上面分析我们知道,在平衡位置(即最低点)时的动能。当m增为原来的4倍,速度减为原来的时,动能不变,最高点的重力势能也不变。但是由于第二次摆的质量增大了(实际上单摆已经变成另一个摆动过程了),势能EP=mgh不变,m大了,h就一定变小了,也就是说,振幅减小了。因此正确答案应选B。

[评析]  本题的分析解答提醒我们,一是考虑要全面,本题中m,v两因素的变化对确定的单摆振动究竟会产生怎样的影响,要进行全面分析;二是分析问题要有充分的理论依据,如本题中决定单摆振动的频率的印度应由周期公式为依据,而不能以速度判断振动的快慢。振幅应从为依据。

例3  如图6-1所示,光滑圆弧轨道的半径为R,圆弧底部中点为O,两个相同的小球分别在O正上方h处的A点和离O很近的轨道B点,现同时释放两球,使两球正好在O点相碰。问h应为多高?

[错解]对B球,可视为单摆,延用单摆周期公式可求B球到达O点的时间:

对A球,它做自由落体运动,自h高度下落至O点

要求两球相碰,则应有。即

解得

[错解原因]  上述答案并没有完全错,分析过程中有一点没有考虑,即是振动的周期性,因为B球在圆形轨道上自B点释放后可以做往复的周期性运动,除了经过时间可能与A相碰外,经过+++……即n+(n=0,1,2……)的时间都可以与A相碰。所以上述解答漏掉一些解,即上述解答只是多个解答中的一个。

对B球振动周期

到达O点的时间为

要求两球相碰,则应有。即

解得(n=0,1,2……)

显然,前面的解仅仅是当n=0时的其中一解而已。

正确答案为(n=0,1,2……)

[评析]  在解决与振动有关的问题时,要充分考虑到振动的周期性,由于振动具有周期性,所以此类问题往往答案不是一个而是多个。

例4  水平弹簧振子,每隔时间t,振子的位移总是大小和方向都相同,每隔的时间,振子的动量总是大小相等,方向相反,则有

A.弹簧振子的周期可能小于

B.

C. 每隔的时间,振子的动能总是相同的

D. 每隔的时间,弹簧的长度总是相同的

[错解]  1.首先排除A,认为A是不可能的。理由是:水平弹簧振子的运动轨迹可简化为如图6-2,O为平衡位置,假设计时开始时,振子位于A点,每隔时间t,振子的位移总是大小和方向都相同,所以t就是一个周期,所以,振子的周期不可能小于

2. 每隔的时间,振子的动能总是大小相等,方向相反,即在A,B之间非A即B点,而这两点距平衡位置都等于振幅,所以加速度都等于最大加速度,所以B是对的。

试题详情

本章中所涉及到的基本方法有:由于振动和波动的运动规律较为复杂,且限于中学数学知识的水平,因此对于这部分内容不可能像研究直线运动、平抛、圆周运动那样从运动方向出发描述和研究物体的运动,而是利用图象法对物体做简谐运动的运动规律及振动在介媒中的传播过程进行描述与研究。图像法具有形象、直观等优点,其中包含有丰富的物理信息,在学习时同学们要注意加以体会;另外,在研究单摆振动的过程中,对于单摆所受的回复力特点的分析,采取了小摆角的近似的处理,这是一种理想化物理过程的方法。

试题详情

本章内容包括机械振动、回复力、振幅、周期、频率、简谐振动、受迫振动、共振、机械波、波长、波速、横波、纵波、波的干涉和衍射等基本概念,以及单摆振动的周期规律、简谐运动的图像、简谐运动中的能量转化规律、波的图像、波长和频率与波速之间的关系等规律。

试题详情

在本章知识应用的过程中,初学者常犯的错误主要表现在:“先入为主”导致解决问题的思路过于僵化,如在计算功的问题中,一些学生一看到要计算功,就只想到W= Fscosθ,而不能将思路打开,从W=Pt和W=ΔEt等多条思路进行考虑;不注意物理规律的适用条件,导致乱套机械能守恒定律。

例1  如图3-1,小物块位于光滑斜面上,斜面位于光滑水平地面上,在小物块沿斜面下滑的过程中,斜面对小物块的作用力

A.垂直于接触面,做功为零

B.垂直于接触面,做功不为零

C.不垂直于接触面,做功为零

D.不垂直于接触面,做功不为零

[错解]斜面对小物块的作用力是支持力,应与斜面垂直,因为支持力总与接触面垂直,所以支持力不做功。故A选项正确。

[错解原因]斜面固定时,物体沿斜面下滑时,支持力做功为零。受此题影响,有些人不加思索选A。这反映出对力做功的本质不太理解,没有从求功的根本方法来思考,是形成错解的原因。

[分析解答]根据功的定义W=F·scosθ为了求斜面对小物块的支持力所做的功,应找到小物块的位移。由于地面光滑,物块与斜面体构成的系统在水平方向不受外力,在水平方向系统动量守恒。初状态系统水平方向动量为零,当物块有水平向左的动量时,斜面体必有水平向右的动量。由于m<M,则斜面体水平位移小于物块水平位移。根据图3-2上关系可以确定支持力与物块位移夹角大于90°,则斜面对物块做负功。应选B。

[评析]求解功的问题一般来说有两条思路。一是可以从定义出发。二是可以用功能关系。如本题物块从斜面上滑下来时,减少的重力势能转化为物块的动能和斜面的动能,物块的机械能减少了,说明有外力对它做功。所以支持力做功。

例2  以20m/s的初速度,从地面竖直向上势出一物体,它上升的最大高度是18m。如果物体在运动过程中所受阻力的大小不变,则物体在离地面多高处,物体的动能与重力势能相等。(g=10m/s2)

[错解]以物体为研究对象,画出运动草图3-3,设物体上升到h高处动能与重力势能相等

此过程中,重力阻力做功,据动能定量有

物体上升的最大高度为H

由式①,②,③解得h=9.5m

[错解原因]初看似乎任何问题都没有,仔细审题,问物全体离地面多高处,物体动能与重力势相等一般人首先是将问题变形为上升过程中什么位置动能与重力势能相等。而实际下落过程也有一处动能与重力势能相等。

[分析解答]上升过程中的解同错解。

设物体下落过程中经过距地面h′处动能等于重力势能,运动草图如3-4。

据动能定量

解得h′=8.5m

[评析]在此较复杂问题中,应注意不要出现漏解。比较好的方法就是逐段分析法。

例3  如图3-5,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短。现将子弹、木块和弹簧合在一起作研究对象,则此系统在从子弹开始射入木块到弹簧压缩到最短的过程中 

A.动量守恒,机械能守恒

B.动量不守恒,机械能不守恒

C.动量守恒,机械能不守恒

D.动量不守恒,机械能守恒

[错解]以子弹、木块和弹簧为研究对象。因为系统处在光滑水平桌面上,所以系统水平方向不受外力,系统水平方向动量守恒。又因系统只有弹力做功,系统机械能守恒。故A正确。

[错解原因]错解原因有两个一是思维定势,一见光滑面就认为不受外力。二是规律适用条件不清。

[分析解答]以子弹、弹簧、木块为研究对象,分析受力。在水平方向,弹簧被压缩是因为受到外力,所以系统水平方向动量不守恒。由于子弹射入木块过程,发生巨烈的摩擦,有摩擦力做功,系统机械能减少,也不守恒,故B正确。

例4  如图3-6,质量为M的木块放在光滑水平面上,现有一质量为m的子弹以速度v0射入木块中。设子弹在木块中所受阻力不变,大小为f,且子弹未射穿木块。若子弹射入木块的深度为D,则木块向前移动距离是多少?系统损失的机械能是多少?

[错解](1)以木块和子弹组成的系统为研究对象。系统沿水平方向不受外力,所以沿水平方向动量守恒。设子弹和木块共同速度为v。据动量守恒有mv0=(M+m)v

解得v=mv0

子弹射入木块过程中,摩擦力对子弹做负功

      ①

摩擦力对木块做正功

          ②

将式①代入式②中求得

解得

(2)系统损失的机械能

即为子弹损失的功能

[错解原因]错解①中错误原因是对摩擦力对子弹做功的位移确定错误。子弹对地的位移并不是D,而D打入深度是相对位移。而求解功中的位移都要用对地位移。错解②的错误是对这一物理过程中能量的转换不清楚。子弹打入木块过程中,子弹动能减少并不等于系统机械能减少量。因为子弹减少的功能有一部分转移为木块的动能,有一部转化为焦耳热。

[分析解答]以子弹、木块组成系统为研究对象。画出运算草图,如图3-7。系统水平方向不受外力,故水平方向动量守恒。据动量守恒定律有

mv0=(M+m)v(设v0方向为正)

子弹打入木块到与木块有相同速度过程中摩擦力做功:

由运动草图可S=S-D                 ③

由式①②③解得

[评析]子弹和木块相互作用过程中,子弹的速度由V0减为V,同时木块的速度由0增加到V。对于这样的一个过程,因为其间的相互作用力为恒力,所以我们可以从牛顿运动定律(即f使子弹和木块产生加速度,使它们速度发生变化)、能量观点、或动量观点三条不同的思路进行研究和分析。类似这样的问题都可以采用同样的思路。一般都要首先画好运动草图。例:如图3-8在光滑水平面上静止的长木板上,有一粗糙的小木块以v0沿木板滑行。情况与题中极其相似,只不过作用位置不同,但相互作用的物理过程完全一样。

参考练习:如图3-9一质量为M、长为l的长方形木板B放在光滑的水平地面上,在其右端放一质量为m的小木块A,m<M。现以地面为参考系,给A和B以大小相同,方向相反的初速度,使A开始向左运动,B开始向右运动,但最后A刚好没有滑离B板。求小木块A向左运动到达最远处(对地)离出发点的距离。

 

提示:注意分析物理过程。情景如图3-10。其中隐含条件A刚好没离B板,停在B板的左端,意为此时A,B无相对运动。A,B作用力大小相等,但加速度不同,由于A的加速度大,首先减为零,然后加速达到与B同速。

答案:

例5  下列说法正确的是(  )

A.合外力对质点做的功为零,则质点的动能、动量都不变

B.合外力对质点施的冲量不为零,则质点动量必将改变,动能也一定变

C.某质点受到合力不为零,其动量、动能都改变

D.某质点的动量、动能都改变,它所受到的合外力一定不为零。

[错解]错解一:因为合外力对质点做功为零,据功能定理有△EA=0,因为动能不变,所以速度V不变,由此可知动量不变。故A正确。

错解二:由于合外力对质点施的冲量不为零,则质点动量必将改变,V改变,动能也就改变。故B正确。

[错解原因]形成上述错解的主要原因是对速度和动量的矢量性不理解。对矢量的变化也就出现理解的偏差。矢量发生变化时,可以是大小改变,也可能是大小不改变,而方向改变。这时变化量都不为零。而动能则不同,动能是标量,变化就一定是大小改变。所以△Ek=0只能说明大小改变。而动量变化量不为零就有可能是大小改变,也有可能是方向改变。

[分析解答]本题正确选项为D。

因为合外力做功为零,据动能定理有△Ek=0,动能没有变化,说明速率无变化,但不能确定速度方向是否变化,也就不能推断出动量的变化量是否为零。故A错。合外力对质点施冲量不为零,根据动量定理知动量一定变,这既可以是速度大小改变,也可能是速度方向改变。若是速度方向改变,则动能不变。故B错。同理C选项中合外力不为零,即是动量发生变化,但动能不一定改变,C选项错。D选项中动量、动能改变,根据动量定量,冲量一定不为零,即合外力不为零。故D正确。

[评析]对于全盘肯定或否定的判断,只要找出一反例即可判断。要证明它是正确的就要有充分的论据。

例6  物体m从倾角为α的固定的光滑斜面由静止开始下滑,斜面高为h,当物体滑至斜面底端,重力做功的瞬时功率为(   )

[错解]错解一:因为斜面是光滑斜面,物体m受重力和支持。支持不做功,只有重力做功,所以机械能守恒。设底端势能为零,则有。物体滑至底端速度为。据瞬时功率P=Fv,有P=,故选A。

错解二:物体沿斜面做v0=0的匀加速运动a=mgsina。设滑到底时间为t,由于,则,解得。重力功为mgh,功率为,故选B。

[错解原因]错解一中错误的原因是没有注意到瞬时功率P=Fvcosθ。

只有Fv同向时,瞬时功率才能等于Fv,而此题中重力与瞬时速度V不是同方向,所以瞬时功率应注意乘上F,v夹角的余弦值。

错解二中错误主要是对瞬时功率和平均功率的概念不清楚,将平均功率当成瞬时功率。

[分析解答]由于光滑斜面,物体m下滑过程中机械能守恒,滑至底端时的瞬时速度为,据瞬时功率。由图3-11可知,F、v夹角θ为90°-α。则有滑至底端瞬时功率,故C选项正确。

[评析]求解功率问题首先应注意求解的是瞬时值还是平均值。如果求瞬时值应注意普遍式P=Fv·cosθ(θ为F,v的夹角)当F,v有夹角时,应注意从图中标明。

例7  一列火车由机车牵引沿水平轨道行使,经过时间t,其速度由0增大到v。已知列车总质量为M,机车功率P保持不变,列车所受阻力f为恒力。求:这段时间内列车通过的路程。

[错解]以列车为研究对象,水平方向受牵引力和阻力f。

据P=F·V可知牵引力

F=                      ①

设列车通过路程为s,据动能定理有

                 ②

将①代入②解得

[错解原因]以上错解的原因是对P=F·v的公式不理解,在P一定的情况下,随着v的变化,F是变化的。在中学阶段用功的定义式求功要求F是恒力。

[分析解答]以列车为研究对象,列车水平方向受牵引力和阻力。设列车通过路程为s。据动能定理

               ①

因为列车功率一定,据可知牵引力的功率

解得

[评析]发动机的输出功率P恒定时,据P=F·V可知v变化,F就会发生变化。牵动ΣF,a变化。应对上述物理量随时间变化的规律有个定性的认识。下面通过图象给出定性规律。(见图3-12所示)

例8  如图3-13,质量分别为m和2m的两个小球A和B,中间用轻质杆相连,在杆的中点O处有一固定转动轴,把杆置于水平位置后释放,在B球顺时针摆动到最低位置的过程中(  )

A.B球的重力势能减少,动能增加,B球和地球组成的系统机械能守恒

B.A球的重力势能增加,动能也增加,A球和地球组成的系统机械能不守恒。

C.A球、B球和地球组成的系统机械能守恒

D.A球、B球和地球组成的系统机械不守恒

[错解]B球下摆过程中受重力、杆的拉力作用。拉力不做功,只有重力做功,所以B球重力势能减少,动能增加,机械能守恒,A正确。

同样道理A球机械能守恒,B错误,因为A,B系统外力只有重力做功,系统机械能守恒。故C选项正确。

[错解原因] B球摆到最低位置过程中,重力势能减少动能确实增加,但不能由此确定机械能守恒。错解中认为杆施的力沿杆方向,这是造成错解的直接原因。杆施力的方向并不总指向沿杆的方向,本题中就是如此。杆对A,B球既有沿杆的法向力,也有与杆垂直的切向力。所以杆对A,B球施的力都做功,A球、B球的机械能都不守恒。但A+B整体机械能守恒。

[分析解答]B球从水平位置下摆到最低点过程中,受重力和杆的作用力,杆的作用力方向待定。下摆过程中重力势能减少动能增加,但机械能是否守恒不确定。A球在B下摆过程中,重力势能增加,动能增加,机械能增加。由于A+B系统只有重力做功,系统机械能守恒,A球机械能增加,B球机械能定减少。所以B,C选项正确。

[评析]有些问题中杆施力是沿杆方向的,但不能由此定结论,只要杆施力就沿杆方向。本题中A、B球绕O点转动,杆施力有切向力,也有法向力。其中法向力不做功。如图3-14所示,杆对B球施的力对B球的做负功。杆对A球做功为正值。A球机械能增加,B球机械能减少。

例9  质量为m的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上。平衡时,弹簧的压缩量为x0,如图3-15所示。物块从钢板正对距离为3X0的A处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动。已知物体质量也为m时,它们恰能回到O点,若物块质量为2m,仍从A处自由落下,则物块与钢板回到O点时,还具有向上的速度,求物块向上运动到最高点与O点的距离。

[错解]物块m从A处自由落下,则机械能守恒

设钢板初位置重力势能为0,则

之后物块与钢板一起以v0向下运动,然后返回O点,此时速度为0,运动过程中因为只有重力和弹簧弹力做功,故机械能守恒。

2m的物块仍从A处落下到钢板初位置应有相同的速度v0,与钢板一起向下运动又返回机械能也守恒。返回到O点速度不为零,设为V则:

因为m物块与2m物块在与钢板接触时,弹性势能之比

2m物块与钢板一起过O点时,弹簧弹力为0,两者有相同的加速度g。之后,钢板由于被弹簧牵制,则加速度大于g,两者分离,2m物块从此位置以v为初速竖直上抛上升距离

                           

由式①~④解得代入式⑤解得

[错解原因]这是一道综合性很强的题。错解中由于没有考虑物块与钢板碰撞之后速度改变这一过程,而导致错误。另外在分析物块与钢板接触位置处,弹簧的弹性势能时,也有相当多的人出错,两个错误都出时,会发现无解。这样有些人就返回用两次势能相等的结果,但并未清楚相等的含义。

[分析解答]物块从3x0位置自由落下,与地球构成的系统机械能守恒。则有

v0为物块与钢板碰撞时的的速度。因为碰撞板短,内力远大于外力,钢板与物块间动量守恒。设v1为两者碰撞后共同速

mv0=2mv1                           (2)

两者以vl向下运动恰返回O点,说明此位置速度为零。运动过程中机械能守恒。设接触位置弹性势能为Ep,则

同理2m物块与m物块有相同的物理过程

碰撞中动量守恒2mv0=3mv2            (4)

所不同2m与钢板碰撞返回O点速度不为零,设为v则

因为两次碰撞时间极短,弹性形变未发生变化

Ep=E’p                              (6)

由于2m物块与钢板过O点时弹力为零。两者加速度相同为g,之后钢板被弹簧牵制,则其加速度大于g,所以与物块分离,物块以v竖直上抛。

据运动学公式,则由

                (7)

[评析]本题考查了机械能守恒、动量守恒、能量转化的。守恒等多个知识点。是一个多运动过程的问题。关键问题是分清楚每一个过程。建立过程的物理模型,找到相应解决问题的规律。弹簧类问题,画好位置草图至关重要。

参考练习:如图3-16所示劲度系数为k1的轻质弹簧分别与质量为m1,m2的物体1,2,栓接系数为k2的轻弹簧上端与物体2栓接,下端压在桌面上(不栓接)。整个系统处于平衡状态,现施力将物体1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面,在此过程中,物体2的重力势能增大了多少?物体1的重力势能增大了多少?

提示:此题隐含的条件很多,挖掘隐含条件是解题的前提。但之后,必须有位置变化的情景图如图3-17。才能确定1,2上升的距离,请读者自行解答。

例10  如图3-18所示,轻质弹簧竖直放置在水平地面上,它的正上方有一金属块从高处自由下落,从金属块自由下落到第一次速度为零的过程中

A.重力先做正功,后做负功

B.弹力没有做正功

C.金属块的动能最大时,弹力与重力相平衡

D.金属块的动能为零时,弹簧的弹性势能最大。

[错解]金属块自由下落,接触弹簧后开始减速,当重力等于弹力时,金属块速度为零。所以从金属块自由下落到第一次速度为零的过程中重力一直做正功,故A错。而弹力一直做负功所以B正确。因为金属块速度为零时,重力与弹力相平衡,所以C选项错。金属块的动能为零时,弹力最大,所以形变最大,弹性势能最大。故D正确。

[错解原因]形成以上错解的原因是对运动过程认识不清。对运动性质的判断不正确。金属块做加速还是减速运动,要看合外力方向(即加速度方向)与速度方向的关系。

[分析解答]要确定金属块的动能最大位置和动能为零时的情况,就要分析它的运动全过程。为了弄清运动性质,做好受力分析。可以从图3-19看出运动过程中的情景。

从图上可以看到在弹力N<mg时,a的方向向下,v的方向向下,金属块做加速运动。当弹力N等于重力mg时,a=0加速停止,此时速度最大。所以C选项正确。弹力方向与位移方向始终反向,所以弹力没有做正功,B选项正确。重力方向始终与位移同方向,重力做正功,没有做负功,A选项错。速度为零时,恰是弹簧形变最大时,所以此时弹簧弹性势能最大,故D正确。

所以B,C,D为正确选项。

[评析]对于较为复杂的物理问题,认清物理过程,建立物情景是很重要的。做到这一点往往需画出受力图,运动草图,这是应该具有的一种解决问题的能力。分析问题可以采用分析法和综合法。一般在考试过程中分析法用的更多。如本题A,B只要审题细致就可以解决。而C,D就要用分析法。C选项中动能最大时,速率最大,速率最大就意味着它的变化率为零,即a=0,加速度为零,即合外力为零,由于合外力为mg-N,因此得mg=N,D选项中动能为零,即速率为零,单方向运动时位移最大,即弹簧形变最大,也就是弹性势能最大。本题中金属块和弹簧在一定时间和范围内做往复运动是一种简运振动。从简谐运动图象可以看出位移变化中速度的变化,以及能量的关系。

 
 
 
 
 
()
 
 
 
 

来源:
 
版权所有:()

版权所有:()

版权所有:()

试题详情

本章中所涉及到的基本方法有:用矢量分解的方法处理恒力功的计算,这里既可以将力矢量沿平行于物体位移方向和垂直于物体位移方向进行分解,也可以将物体的位移沿平行于力的方向和垂直于力的方向进行分解,从而确定出恒力对物体的作用效果;对于重力势能这种相对物理量,可以通过巧妙的选取零势能面的方法,从而使有关重力势能的计算得以简化。

试题详情

本章内容包括功、功率、动能、势能(包括重力势能和弹性势能)等基本概念,以动能定理、重力做功的特点、重力做功与重力势能变化的关系及机械能守恒定律等基本规律。其中对于功的计算、功率的理解、做功与物体能量变化关系的理解及机械能守恒定律的适用条件是本章的重点内容。

试题详情

在本章知识应用的过程中,初学者常犯的错误主要表现在:不对电路进行分析就照搬旧的解题套路乱套公式;逻辑推理时没有逐步展开,企图走“捷径”;造成思维“短路”;对含有电容器的问题忽略了动态变化过程的分析。

例1  如图9-1所示电路,已知电源电动势ε=6.3V,内电阻r=0.5Ω,固定电阻R1=2Ω,R2=3Ω,R3是阻值为5Ω的滑动变阻器。按下电键K,调节滑动变阻器的触点,求通过电源的电流范围。

[错解]

将滑动触头滑至左端,R3与R1串联再与R2并联,外电阻

再将滑动触头滑至右端R3与R2串联再与R1并联,外电阻

[错解原因]

由于平时实验,常常用滑动变阻器作限流用(滑动变阻器与用电器串联)当滑动头移到两头时,通过用电器的电流将最大或最小。以至给人以一种思维定势:不分具体电路,只要电路中有滑动变阻器,滑动头在它的两头,通过的电流是最大或最小。

[分析解答]

将图9-1化简成图9-2。外电路的结构是R′与R2串联、(R3-R′)与R1串联,然后这两串电阻并联。要使通过电路中电流最大,外电阻应当最小,要使通过电源的电流最小,外电阻应当最大。设R3中与R2串联的那部分电阻为R′,外电阻R为

因为,两数和为定值,两数相等时其积最大,两数差值越大其积越小。

当R2+R′=R1+R3-R′时,R最大,解得

因为R1=2Ω<R2=3Ω,所以当变阻器滑动到靠近R1端点时两部分电阻差值最大。此时刻外电阻R最小。

由闭合电路欧姆定律有:

通过电源的电流范围是2.1A到3A。

[评析]

不同的电路结构对应着不同的能量分配状态。电路分析的重要性有如力学中的受力分析。画出不同状态下的电路图,运用电阻串并联的规律求出总电阻的阻值或阻值变化表达式是解电路的首要工作。

例2  在如图9-3所示电路中,R1=390Ω,R2=230Ω,电源内电阻r=50Ω,当K合在1时,电压表的读数为80V;当K合在2时,电压表的读数为U1=72V,电流表的读数为I1=0.18A,求:(1)电源的电动势(2)当K合在3时,两电表的读数。

[错解]

(1)因为外电路开路时,电源的路端电压等于电源的电动势,所以ε=U=80V;

[错解原因]

上述解答有一个错误的“替代假设”:电路中的电流表、电压表都是理想的电表。事实上,问题并非如此简单。如果进一步分析K合在2时的情况就会发现矛盾:I1R1=0.18×390=70.2(V)≠80V,这就表明,电路中的电流表和电压表并非理想的电表。

[分析解答]

(1)由题意无法判断电压表、电流表是理想电表。设RA、Rv分别为电压表、电流表的内阻,R′为电流表与电阻器R1串联后的电阻,R″为电流表与电阻器R2串联的电阻。则K合在2时:

由上述两式解得:R1=400Ωε=90V

(2)当K合在3时,因

90V=67.5(V)

=0.28(A)

[评析]

本题告诉我们,有些题目的已知条件隐藏得很深。仅从文字的表面是看不出来的。只好通过试算的方法判断。判断无误再继续进行解题。

例3  如图9-4所示,ε1=3V,r1=0.5Ω,R1=R2=5.5Ω,平行板电容器的两板距离d=1cm,当电键K接通时极板中的一个质量m=4×10-3g,电量为q=1.0×10-7C的带电微粒恰好处于静止状态。求:(1)K断开后,微粒向什么方向运动,加速度多大?(2)若电容为1000pF,K断开后,有多少电量的电荷流过R2

[错解]

当电键K接通电路稳定时、电源ε1和ε2都给电容器极板充电,所以充电电压U=ε12

带电粒子处于平衡状态,则所受合力为零,

F-mg=0

ε2=U-ε1=1(v)

当电键K断开后,电容器上只有电源  给它充电,U′=ε2

即带电粒子将以7.5m/s2的加速度向下做匀加速运动。

又 Q1=CU=103×10-12×4=4×10-9C

Q′=CU′=103×10-12×1=1×10-9C

△Q=Q-Q′=3×10-9C

极板上电量减少3×10-9C,也即K断开后,有电量为3×10-9C的电荷从R2由下至上流过。

[错解原因]

在直流电路中,如果串联或并联了电容器应该注意,在与电容器串联的电路中没有电流,所以电阻不起降低电压作用(如R2),但电池、电容两端可能出现电势差,如果电容器与电路并联,电路中有电流通过。电容器两端的充电电压不是电源电动势ε,而是路端电压U。

[分析解答]

(1)当K接通电路稳定时,等效电路图如图9-5所示。

ε1、r1和R1形成闭合回路,A,B两点间的电压为:

电容器中带电粒子处于平衡状态,则所受合力为零,

F-mg=0

在B,R2,ε2,C,A支路中没有电流,R2两端等势将其简化,U+ε2=UAB,ε2=U-UAB=1.25V

当K断开电路再次达到稳定后,回路中无电流电路结构为图9-6所示。电容器两端电压U′=ε2=1.25V

即带电粒子将以6.875m/s2的加速度向下做匀加速运动。

(2)K接通时,电容器带电量为Q=CU=4×1O-9C

K断开时,电容器带电量为Q′=CU′=1.2×10-9(C)

△Q=Q-Q′=2.75×10-9C

有总量为2.75×10-9(C)的电子从R2由下至上流过。

[评析]

本题考查学生对电容器充放电物理过程定性了解程度,以及对充电完毕后电容所在支路的电流电压状态是否清楚。学生应该知道电容器充电时,随着电容器内部电场的建立,充电电流会越来越小,电容器两极板间电压(电势差)越来越大。当电容器两端电压与电容器所并联支路电压相等时充电过程结束,此时电容器所在的支路电流为零。

根据这个特点学生应该会用等势的方法将两端等势的电阻简化,画出等效电路图,如本题中的图9-5,图9-6,进而用电路知识解决问题。

例4  如图9-7所示,电源电动势ε=9V,内电阻r=0.5Ω,电阻R1=5.0Ω、R2=3.5Ω、R3=6.0Ω、R4=3.0Ω,电容C=2.0μF。当电键K由a与接触到与b接触通过R3的电量是多少?

[错解]

K接a时,由图9-8可知

=5(V)

此时电容器带电量

K接b时,由图9-9可知

=3.5(V)

此时电容器带电量

流过R3的电量为△Q=QC-Q′C =3×10-6(C)

[错解原因]

没有对电容器的充电放电过程做深入分析。图9-8图中电容器的上极板的电势高,图9-9中电容器的下极板的电势高。电容器经历了先放电后充电的过程。经过R3的电量应是两次充电电量之和。

[分析解答]

K接a时,由图9-8可知

此时电容器带电量QC=CU1=I×10-5(C)

K接b时,由图9-9可知

此时电容器带电量Q′C=CU1=0.7×10-5(C)

流过R3的电量为△Q=QC+Q′C=1.7×10-5(C)

[评析]

对于电容电量变化的问题,还要注意极板电性的正负。要分析清电容器两端的电势高低,分析全过程电势变化。

例5  在电源电压不变的情况下,为使正常工作的电热器在单位时间内产生的热量增加一倍,下列措施可行的是

A、剪去一半的电阻丝

B、并联一根相同的电阻丝

C、串联一根相同的电阻丝

D、使电热器两端的电压增大一任

[错解]

根据可知,,因为U不变,所以要使电阻减为原来的一半,所以选A、B。

[错解原因]

忽略了每根电阻丝都有一定的额定功率这一隐含条件。

[分析解答]

将电阻丝剪去一半后,其额定功率减小一半,虽然这样做在理论上满足使热量增加一倍的要求,但由于此时电阻丝实际功率远远大于额定功率,因此电阻丝将被烧坏。故只能选B。

[评析]

考试题与生产、生活问题相结合是今后考试题的出题方向。本题除了需要满足电流、电压条件之外,还必须满足功率条件:不能超过用电器的额定功率。

例6  如图9-10所示的电路中已知电源电动势ε=36V,内电阻r=2Ω,R1=20Ω,每盏灯额定功率都是2W,额定电压也相同。当K闭合调到R2=14Ω时,两灯都正常发光;当K断开后为使L2仍正常发光,求R2应调到何值?

[错解]

设所求电阻R′2,当灯L1和L2都正常发光时,即通过灯的电流达额定电流I。

[错解原因]

分析电路时应注意哪些是恒量,哪些是变量。图9-10电路中电源电动势ε是恒量,灯L1和L2正常发光时,加在灯两端电压和通过每个灯的电流是额定的。错解中对电键K闭合和断开两种情况,电路结构差异没有具体分析,此时随灯所在支路电流强度不变,两种情况干路电流强度是不同的,错误地将干路电流强度认为不变,导致了错误的结果。

[分析解答]

解法一:设所求阻值R′2,当灯L1和L2正常发光时,加在灯两端电压力额定电压UL

当K闭合时,ε1=UL+I1(R1+r+R2)

当K断开时,ε2=UL+I2(R1+r+R′2),

又 ∵ε12=ε  I1=2I2=2I,(I为额定电流)

得ε= UL+2I(R1+r+R2)                 ①

ε=USL+I(R1+r+R′2)               ②

①-②I(R1+r+2R2-R2′)=0  但I≠0,∴R1+r+2R2=R′2即R′2=20+2+2×14=50Ω

解法二:设所求阻值R′2,当灯L1和L2正常发光时,加在灯两端电压为额定电压UL,由串联电路电压分析可得:

[评析]

电路中的局部电路(开关的通断、变阻器的阻值变化等)发生变化必然会引起干路电流的变化,进而引起局部电流电压的变化。应当牢记当电路发生变化后要对电路重新进行分析。

例7  如图9-11所示,电源电压保持不变,变阻器R1的最大值大于R2的阻值,在滑片P自右向左滑动过程中,R1的电功率如何变化?

[错解]

采用“端值法”,当P移至最左端时,R1=0,则Rl消耗的电功率变为0,由此可知,当滑片P自右向左滑动过程中,R1的电功率是变小的。

[错解原因]

此题虽然不能直接用,判断出结果,但由于题中R1>R2,所以用端值法只假设R1=0是不够的。

[分析解答]

因此,在这两种情况时,R1的电功率都是P1<U2/4R,且不难看出,Rl与R2差值越大,P1越小于U2/4R。

综上所述,本题答案应是滑片P自右向左移动时,Rl的电功率逐渐变大;当R1=R2时R1的电功率最大;继续沿此方向移动P时,R1的电功率逐渐变小。

[评析]

电路中某电阻消耗的功率,不止是由本身电阻决定,还应由电路的结构和描述电路的各个物理量决定。求功率的公式中出现二次函数,二次函数的变化不一定单调变化的,所以在求解这一类问题时,千万要作定量计算或者运用图像进行分析。

例8  如图9-12所示电路,当电键K依次接a和b的位置时,在(1)R1>R2(2) Rl=R2(3) R1<R2三种情况时,R1、R2上消耗的电功率哪个大?

[错解]

 (l)根据P=I2R可知,当R1>R2时,P1>P2;当R1=R2时,P1=P2;当Rl<R2时,P1>P2

(2)根据 

当R1>R2时,P1<P2;当R1=R2时,P1=P2;当R1<R2时,P1>P2

[错解原因]

错误在于认为电路改变时其路端电压保持不变,U1=U2,应该分析当电键K接不同位置时,电路的结构不同,电路结构改变但ε,r不变。

[分析解答]

当电键K接不同位置时,电路的结构不同。

(l)当R1<R2时,若r2=R1R2  P1-P2=0所以P1=P2;若r2<R1R2  P1-P2<0所以 P1<P2若r2> RlR2  P1-P2>0所以P1>P2

(2)当R1>R2时,若r2=R1R2  P1-P2=0,所以P1=P2;若r2<R1R2P1-P2>0所以 P1>P2;若r2> R1R2

[评析]

解决电路问题先审题,审题过后有的同学头脑中出现许多公式,他从中选择合适的公式,有的同学则从头脑中搜寻以前做过的题目,看有没有与本题相似的题目,如果有相似的题目,就把那道题的解题方法照搬过来。这些方法不一定错,但是一旦问题比较复杂,或者题目叙述的是一个陌生的物理情境,这些方法就不好用了。所以,规范化的解题步骤是必不可少的。

例9  如图9-13所示电路中,r是电源的内阻,R1和R2是外电路中的电阻,如果用Pr,P1和P2分别表示电阻r,R1,R2上所消耗的功率,当R1=R2=r时,Pr∶P1∶P2等于

A、1∶l∶1    B、2∶1∶1    C、1∶4∶4    D、4∶l∶1

[错解]

因为R1=R2=r,r与R1,R2并联,它们电压相同,

[错解原因]

认为电源的两端就是外电路的两端,所以内外电阻是并联关系,即认为r与R1,R2并联,Ur=U1-U2,这一看法是错误的,Ur不等于U1,Ur=ε-U1

[分析解答]

在图9-13电路中,内电阻上通过的电流与外电路的总电流相同,内电阻与外电阻是串联关系,(不能认为内电阻与外电阻并联)但R1与R2是并联的,因R1=R2,则I1=I2=I,

Ir=I1+I2=2I。

Pr∶P1∶P2=Ir2r∶I12R1∶I22R2∶=4∶1∶1。,所以是正确的。

[评析]

单凭直觉就对电路的串并联关系下结论,太草率了。还是要通过电流的分合,或电势的高低变化来做电路分析。

例10  如图9-14所示,

已知电源电动势ε=20V,内阻r=1Ω,当接入固定电阻R=4Ω时,电路中标有“3V 4.5W”的灯泡L和内阻r′=0.5Ω的小型直流电动机恰能正常工作,求(1)电路中的电流强度?(2)电动机的额定工作电压?(3)电源的总功率?

[错解]

由灯泡的额定电压和额定功率可求得灯泡的电阻

串联电路中电路中的电流强度

电动机额定工作电压U=I′r=2.7×0.5=l.35(V)

电源总功率P=Iε=2.7×20=54(W)

[错解原因]

此电路是非纯电阻电路,闭合电路欧姆定律ε=IR不适用,所以电路中的电流强度不能用求出。电动机额定工作电压U≠r。

[分析解答]

(1)串联电路中灯L正常发光,电动机正常工作,所以电路中电流强度为灯L的额定电流。

电路中电流强度I=1.5A。

(2)电路中的电动机是非纯电阻电路。根据能量守恒,电路中

ε=UR+UL+Ur+Um

Um=ε-UR-UL-Ur=ε-I(R+RL+r)=20-1.5×(2+4+1)=9.5

(3)电源总功率P=Iε=1.5×20=30(W)。

[评析]

要从能量转化与守恒的高度来认识电路的作用。一个闭合电路中,电源将非静电能转化为电能,内外电路又将电能转化为其他形式的能。ε=U+U则是反映了这个过程中的能量守恒的关系。

例11  电动机M和电灯L并联之后接在直流电源上,电动机内阻r′=1Ω,电灯灯丝电阻R=10Ω,电源电动势ε=12V,内阻r=1Q,当电压表读数为10V时,求电动机对外输出的机械功率。

[错解]

由部分电路的欧姆定律,=1A,由于L 与M并联,流过的电流与其电阻成反比,

[错解原因]

上述错解过程中有两处致命的错误:一是将电动机视为纯电阻处理了,电动机不属于纯电阻,而是将电能转化为机械能,错解中利用了并联电路中支路电流与电阻成反比的结论是不恰当的,因为该结论只适用于纯电阻电路,二是不明确电动机的输入功率PM与输出功率PM的区别,IM2r′是电动机内阻发热功率。三者的关系是:PM=PM+IM2r′。

[分析解答]

根据题意画出电路图,如图9-15所示。由全电路欧姆定律ε= U+Ir得出干路电流

由已知条件可知:流过灯泡的电流

电动机的输出功率的另一种求法:以全电路为研究对象,从能量转化和守恒的观点出发P=P。本题中电路中消耗电能的有:内电阻、灯泡和电动机,电动机消耗的电能又可分为电动机输出的机械能和电动机自身消耗的内能。即Iε=I2r+IL2R+PM+IM2r′。

PM=Iε-(I2r+IL2R++IM2r′)=9(W)

[评析]

站在能量转化与守恒的高度看电路各个部分的作用。就可以从全局的角度把握一道题的解题思路,就能比较清醒地分清公式规律的适用范围和条件。

例12  如图9-16,外电路由一个可变电阻R和一个固定电阻R0串联构成,电源电动势为ε,电源内阻为r,

问:R调到什么时候,R0上将得到最大功率。

[错解]

把可变电阻R看成电源内阻的一部分,即电源内阻r′=r+R。利用电源输出功率最大的条件是R=r′得R0=R+r,即R=R0-r,所以把可变电阻调到R=R2-r时,电路中R0上得到最大功率,其大小为

 

[错解]

可变电阻R上得到的功率,决定于可变电阻的电流和电压,也可以用电源输出功率最大时的条件,内外电阻相同时电源有最大输出功率来计算。但是题目要求讨论定值电阻R0上的输出功率,则不能生搬硬套。定值电阻R0上的功率,决定于流过电阻R0的电流强,这与讨论可变电阻R上的功率不同。

[分析解答]

电流经过电阻R0,电流能转换成内能,R0上功率决定于电流强度大小和电阻值,即P=I2R0,所以当电流强度最大时,R0上得到最大功率。由纯电阻的闭合电路欧姆定律,有

当可变电阻R减小到零时,电路中电流强度有最大值,固定电阻R0上有最大输出功率,其大小为

 

[评析]

在讨论物理问题时选择研究对象是重要的一环。研究对象选错了,就要犯张冠李戴的错误。明明题目中要我们计算定值电阻的功率,有人却套用滑动变阻器的结论。所以认真审题找出研究对象,也是提高理解能力的具体操作步骤。

例13  输电线的电阻共计10Ω,输送的电功率是100kw,用400V的低压送电,输电线上发热损失的功率是多少kw?改用10kV的高压送电,发热功率损失又是多少kw?

[错解]

错解一:当用400W的低压送电时,,所以

错解二:设负载电阻为R,输电线电阻为r,

[错解原因]

错解一是对欧姆定律使用不当,输送电压是加在输电线电阻和负载上的,如果把它考虑成输电线上的电压求电流强度当然就错了。错解二注意到了负载的作用,所求出的损失功率P1是正确的,然而在高压送电电路中,负载都是使用了变压器而错解二把它当作纯电阻使P2解错。

[分析解答]

输送电功率100kw,用400V低压送电,输电线上电流

输电线上损失功率

若用10kV高压送电输电线上电流

输电线上损失功率P2=I22r=102×1=0.1(kw)

[评析] 

一道很简单的题目做错了,有些人将错解原因归结为:粗心、看错了题目。其实真正的原因是解题不规范。如果老老实实地画出电路图标出各个物理量,按图索骥就可以避免所谓的“粗心”的错误。

例14  把一个“10V 2.0W”的用电器A(纯电阻)接到某一电动势和内阻都不变的电源上,用电器A实际消耗的功率是2.0W,换上另一个“ 10V 5.0W”的用电器B(纯电阻)接到这一电源上,用电器B实际消耗的电功率有没有可能反而小于2.0W?你如果认为不可能,试说明理由,如果认为可能,试求出用电器B实际消耗的电功率小于2.0W的条件(设电阻不随温度改变)

[错解]

将“ 10V 2.0W”的用电器与电源连接,用电器正常工作说明用电器两端电压为10V,现将“ 10V 5.0W”的用电器B与电源连接,用电器两端电压是10V,B也能正常工作,实际功率是5.0W,所以用电器的实际功率不会小于2.0W。

[错解原因]

把路端电压与电源电动势混为一谈,认为路端电压是恒定的,不随外电路改变而改变。

[分析解答]

内电阻部可忽略,,因为,r一定,当R越大,U也越大,所以与不同,U不是恒定的。

设电源电动势,内电阻r,,R越大,U越小,所以当B连入时,用电器两端的电压将小于10V,它消耗的实际功率将小于5.0W,有可能小于2.0W,但需满足=2(W),<2W,可解得:r>,当满足上述条件时,B的实际功率小于2.0W。

[评析]

根据电源最大输出功率的条件做出输出功率与外电阻图(P-R图如图9-17所示)做定性分析,也可以得到同样的结果。由题意可知RA接入电路时,若电源的输出功率达到最大输出功率,则RB接入电路时,电源的输出功率肯定小于最大输出功率2W。若电源的输出功率没有达到最大输出功率,RB接入电路时,电源的输出功率有可能小于RA接入电路时输出功率2W。

例15  有四个电源,电动势均为8V,内阻分别为1Ω、2Ω、4Ω、8Ω,今要对R=2Ω的电阻供电,问选择内阻为多大的电源才能使R上获得的功率最大?

A、1Ω     B、2Ω      C、4Ω     D、 8Ω

[错解]

依“外电阻等于内电阻(R=r)时,外电路上的电功率有最大值”可知,应选内阻2Ω的电源对R供电,故选B。

[错解分析]

上述错解的根源在于滥用结论。事实上,确定的电源有最大的输出功率和确定的外电路上获得最大功率的条件是不同的。“外电阻等于内电阻(R=r)时,外电路上的电功率有最大值”只适用于电源确定而外电阻可选择的此形,而本题实属外电阻确定而电源可选的情况,两者意义不同,不可混为一谈。

[分析解答]

由于可知,R上消耗的功率,显然P是r的单调减函数,所以就题设条件而言,r取1Ω时P有最大值,应选A。

[评析]

物理学的任何规律结论的成立都是有条件的,都有其适用范围。有的同学做题比较多,习惯于套用一些熟悉题目的解题路子。这种方法有它合理的一面,也有其造成危害的一面。关键是要掌握好“条件和范围”。

例16  图9-18所示,为用伏安法测量一个定值电阻阻值的实验所需要的器材实物图,器材规格如下:(1)待测电阻RX(约100Ω)(2)直流毫安表(量程0-10mA,内阻50Ω)(3)直流电压表(量程0-3V,内阻5kΩ)(4)直流电源(输出电压4V,允许最大电流1A)(5)滑动变阻器(阻值范围0-15Ω,允许最大电流1A)(6)电键一个,导线若干条。根据器材的规格和实验要求,在本题的实物图上连线。

[错解]

错解一:如图9-19所示,此种连法错在变阻器的右下接线柱和电源的负极之间少连了一条线,即使变阻器取最大值,通过电路的电流也超过了10mA,大于毫安表的量程。

错解二:如图9-20所示有两处不妥:①电压调节范围小;②电流过大。这种连法实际上与图9-19的错误是一样的。

错解三:如图9-21所示,此种连法是用伏安法测量,电路与变阻器由滑动触头并联,无论变阻器的阻值怎样变化,流过毫安表的电流

始终超过毫安表的量程,而且当滑动触头滑到最左端时,电源还有被短路的可能,故连接错误。

错解四:如图9-22所示,可见这种连法实际上与图9-21(变阻器取最大值时)的错误是一样的。

错解五:如图9-23所示,显然可见,当电键闭合时电源被短路,这是不允许的,连接错误。

错解六:如图9-24所示,电键闭合后电源被短路,滑到最右端时,电流超过毫安表的最大量程,故连接错误。

错解七:如图9-25,无论电键是否闭合,电源、变阻器回路始终是接通的,电键的位置连接错了。

连接上的原因是:在高中学习伏安法测电阻时,接触的多是将变阻器连接一个上接线柱和一个下接线柱,串连在电路中分压限流,因而在做此题时,采用了习惯连法,没有对器材的规格要求进行计算、分析。

(2)将毫安表内接错误,错误的症结是不了解系统误差产生的原因,也是没有对器材的规格进行具体分析。

(3)出现同时连接变阻器的两个上接线柱;电表的“+”、“-”接反;不在接线柱上连线,而是在连线上连线等,说明学生缺乏实验操作的规范化训练,或缺乏亲自动手做实验。

[分析解答]

用伏安法测电阻,首先要判明电流表应该内接还是外接,由题目所给器材规格来看,显然不满足RA<<Rx条件,而是满足Rv>>Rx条件,所以应采用外接法。若图9-26电路,当滑动触头P处于最左端,滑动变阻器为最大值时,由题设条件流过电流表的电流

超过安培表的量程。因此变阻器既应分压又应分流。

正确的连接图为图9-27所示。画图的关键是:毫安表需外接,变阻器接成分压电路。实验开始前将滑动变阻器的滑动触头滑至分压为零的位置。

[评析]

在设计实验过程时,要根据具体实验条件,灵活应用实验原理,改变实验方法。善于从习题中或所学的物理定律的推论中得出实验原理和方法。基本原则是不能是电表超过量程,测量误差尽可能小;不能使用电器超过其额定功率,结构上不能出现短路断路现象。

例17  如图9-28所示电路的三根导线中有一根是断的。电源电阻器R1·R2及另外两根导线都是好的。为了查出断导线,某学生想先用万用表的红表笔连接在电源的正极a,再将黑表笔分别连接在电阻器Rl的b端和R2的c端,并观察万用表指针的示数。在下列选挡中,符合操作规程的是:

         

A.直流10V挡    B.直流0.5A挡    C.直流2.5V挡   D.欧姆挡

[错解]

如果电路连接正常,电路中的电流

测量的最大电压为U1=IR1=2V。可选A、C。

用欧姆挡可以直接测量回路中的电阻是否等于15Ω或者等于10Ω。

[错解原因]

选B的同学没有考虑R1与R2之间的导线断开的情况。选C的同学没有考虑到无论哪根导线断开,测得的电压都等于6V,大于2.5V。如选D的同学没有考虑到如果被测回路中有电源,欧姆表就可能被毁坏或读数不准。

[分析解答]

设万用表各挡都理想,忽略电源的内阻。选用不同功能档时,应画出电路图,至少在头脑中想清楚。

用电压挡测量时,由于电路断开(无论是从ab间断开,还是从R1与R2之间断开)电路中无电流,黑表笔与电源负极等电势。直流电压挡测量的数值是电源电动势ε=6V。所以A选项可行,C选项不行。

用电流挡测量时,假设ab间导线完好,而R1与R2之间导线断开,黑表笔接在C端测得的电流为,大于电流档量程。排除B选项。

被测回路中有电源,欧姆表不能适用,排除D选项。

[评析]

本题考查学生的实验能力。还考察学生的逻辑思维能力。逻辑思维的基础是对电路结构的理解。养成正确的电路分析的习惯,处处受益。

 
 
 
 
 
()
 
 
 
 

来源:
 
版权所有:()

版权所有:()

版权所有:()

试题详情

本章涉及到的基本方法有运用电路分析法画出等效电路图,掌握电路在不同连接方式下结构特点,进而分析能量分配关系是最重要的方法;注意理想化模型与非理想化模型的区别与联系;熟练运用逻辑推理方法,分析局部电路与整体电路的关系

试题详情

本章内容包括电流、产生持续电流的条件、电阻、电压、电动势、内电阻、路端电压、电功、电功率等基本概念,以及电阻串并联的特点、欧姆定律、电阻定律、闭合电路的欧姆定律、焦耳定律、串联电路的分压作用、并联电路的分流作用等规律。

试题详情


同步练习册答案